Respuesta :

Answer:

[tex]32 + 8 \sqrt{10} [/tex]

Step-by-step explanation:

Segment XM= 24

d=

[tex] \sqrt{(x2 - x1) ^{2} + (y2 - y1) ^{2} } [/tex]

[tex]d = \sqrt{(24 - 0) ^{2} + ( - 3 + ( - 3)) {2}^{?} } [/tex]

[tex]d = \sqrt{24 ^{2} + 0 ^{2} } [/tex]

[tex]d = 24[/tex]

Segment XK=8

[tex]d = \sqrt{(x2 - x1) ^{2} + (y2 - y1) ^{2} } [/tex]

[tex]d = \sqrt{(0 - 0) ^{2} + (5 - ( - 3))^{2} } [/tex]

[tex]d = \sqrt{(0 )^{2} + 8^{2} } [/tex]

[tex]d = \sqrt{64} [/tex]

[tex]d = 8[/tex]

Segment KM=

[tex]d = \sqrt{ {(0 - 24)}^{2} + {(5 - ( - 3))}^{2} } [/tex]

[tex]d = \sqrt{ { - 24}^{2} + {8}^{2} } [/tex]

[tex]d = \sqrt{576 + 64} [/tex]

[tex]d = \sqrt{640} [/tex]

[tex]d = 8 \sqrt{10} [/tex]

Perimeter = the length of all 3 segments.

[tex]p = 8 + 24 + 8 \sqrt{10} [/tex]

[tex]p = 32 + 8 \sqrt{10} [/tex]