Respuesta :
Answer:
[tex]y=-x^2+12x-27[/tex]
Step-by-step explanation:
The general equation of the parabola is [tex]y=ax^2+bx+c[/tex]
As the parabola passes through [tex](3,0),(9,0)[/tex]
[tex]0=9a+3b+c\,\,\,...(i)\\0=81a+9b+c\,\,\,...(ii)[/tex]
Subtract (i) from (ii)
[tex](81a+9b+c)-(9a+3b+c)=0\\72a+6b=0\\12a+b=0\\b=-12a[/tex]
Also, the parabola passes through [tex](10,-7)[/tex],
[tex]-7=100a+10b+c\,\,\,...(iii)[/tex]
Subtract (i) from (iii)
[tex](100a+10b+c)-(9a+3b+c)=-7-0\\91a+7b=-7[/tex]
Put [tex]b=-12a[/tex]
[tex]91a+7(-12a)=-7\\91a-84a=-7\\7a=-7\\a=-1[/tex]
Put [tex]a=-1[/tex] in [tex]b=-12a[/tex]
[tex]b=-12(-1)=12[/tex]
Put [tex]a=-1,b=12[/tex] in (i)
[tex]0=9a+3b+c\\0=-9+36+c\\0=27+c\\c=-27[/tex]
So, equation is [tex]y=-x^2+12x-27[/tex]
The equation of the parabola is y = -x² + 12x - 27
Parabola is the locus of a point such that the same distance from a fixed line, called the directrix, and a fixed point (the focus) is the same.
The equation of a parabola is in quadratic form. Hence it is given as:
y = ax² + bx + c
At point (3, 0):
0 = a(3²) + b(3) + c
9a + 3b + c = 0 (1)
At point (9, 0):
0 = a(9²) + b(9) + c
81a + 9b + c = 0 (2)
At point (10, -7):
-7 = a(10²) + b(10) + c
100a + 10b + c = -7 (3)
Solving equations 1, 2, 3 gives: a = -1, b = 12, c = -27
The equation of the parabola is hence y = -x² + 12x - 27
Find out more at: https://brainly.com/question/21685473