Respuesta :
Answer:
Step-by-step explanation:
League A League B
151.12 163.25
148 157
26.83 24.93
29 136
136 145
167 178
207 256
League A in ascending order :
26.83 , 29 , 136, 148 , 151.12 , 167,207
[tex]Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\\\Mean = \frac{26.83+29 +136+ 148+ 151.12+ 167+207}{7}\\\\Mean =123.564[/tex]
Median = Mid value of data
n = 7
So, mid value = 4th term
Median=148
Standard deviation=[tex]\sqrt{\frac{\sum(x_i-\bar{x})^2}{n}}[/tex]=[tex]=\sqrt{\frac{(26.83-123.564)^2+(29-123.564)^2+.......+(207-123.564)^2}{7}}=63.98[/tex]
To Find Q1
Q1 is the mid value of lower quartile
Lower quartile : 26.83 , 29 , 136, 148
n = 4
Q1=82.5
To Find Q3
Q3 is the mid value of upper quartile
Upper quartile : 148 , 151.12 , 167,207
n = 4
Q3=159.06
IQR = Q3-Q1=159.06-82.5=76.56
To find outlier
(Q1-1.5IQR ,Q3+1.5IQR)
[tex](82.5-1.5\times 76.56,159.06+1.5\times 76.56)[/tex]
(-32.34,273.9)
So, There is no outlier
Maximum = 207
2)
League B in ascending order :
24.93,136,145,157,163.25,178,256
[tex]Mean = \frac{\text{Sum of all observations}}{\text{No. of observations}}\\\\Mean = \frac{24.93+136+145+157+163.25+178+256}{7}\\\\Mean =151.45[/tex]
Median = Mid value of data
n = 7
So, mid value = 4th term
Median=157
Standard deviation=[tex]\sqrt{\frac{\sum(x_i-\bar{x})^2}{n}}[/tex]=[tex]=\sqrt{\frac{(24.93-151.45)^2+(136-151.45)^2+.......+(256-151.45)^2}{7}}=68.42[/tex]
To Find Q1
Q1 is the mid value of lower quartile
Lower quartile : 24.93,136,145,157
n = 4
[tex]Median = \frac{\frac{n}{2} \text{th term}+(\frac{n}{2}+1) \text{th term}}{2}\\Median = \frac{\frac{4}{2} \text{th term}+(\frac{4}{2}+1) \text{th term}}{2}\\Median = \frac{2 \text{th term}+3 \text{th term}}{2}\\Median = \frac{136+145}{2}=140.5[/tex]
Q1=140.5
To Find Q3
Q3 is the mid value of upper quartile
Upper quartile : 157,163.25,178,256
n = 4
Q3=170.625
IQR = Q3-Q1=170.625-140.5=30.125
To find outlier
(Q1-1.5IQR ,Q3+1.5IQR)
[tex](140.5-1.5\times 30.125,170.625+1.5\times 30.125)[/tex]
(95.3125,215.8125)
24.93 and 256 are outliers
Maximum = 256