Respuesta :
Answer:
A. No restriction on the domain of g(x); inverse is g–1(x) = RootIndex 3 StartRoot StartFraction x minus a Over 41 EndFraction EndRoot
Explanation:
Given the function [tex]g(x)=41x^3+a\\[/tex], we are to find the inverse of the function a shown below:
Ley y = g(x)
[tex]y=41x^3+a\\[/tex]
replace y with x
[tex]x=41y^3+a\\[/tex]
make y the subject of the formula:
[tex]x = 41y^3+a\\41y^3 = x-a\\y^3 = \frac{x-a}{41} \\y = \sqrt[3]{\frac{x-a}{41} }[/tex]
Replace y with [tex]g^{-1}(x)[/tex]
[tex]g^{-1}(x) = \sqrt[3]{\frac{x-a}{41} }[/tex]
Hence the inverse function [tex]g^{-1}(x) = \sqrt[3]{\frac{x-a}{41} }[/tex]
No restriction on the domain of g(x). Hence the correct option is A