contestada

Given the function g(x) = 41x3 + a for some constant a, which describes the inverse function g–1(x)?

no restriction on the domain of g(x); inverse is g–1(x) = RootIndex 3 StartRoot StartFraction x minus a Over 41 EndFraction EndRoot
no restriction on the domain of g(x); inverse is g–1(x) = (StartFraction x minus a Over 41 EndFraction) cubed
domain of g(x) restricted to x ≥ 0; inverse is g–1(x) = RootIndex 3 StartRoot StartFraction x minus a Over 41 EndFraction EndRoot
domain of g(x) restricted to x ≥ 0; inverse is g–1(x) = (StartFraction x minus a Over 41 EndFraction) cubed

Respuesta :

Answer:

A. No restriction on the domain of g(x); inverse is g–1(x) = RootIndex 3 StartRoot StartFraction x minus a Over 41 EndFraction EndRoot

Explanation:

Given the function [tex]g(x)=41x^3+a\\[/tex], we are to find the inverse of the function a shown below:

Ley y = g(x)

[tex]y=41x^3+a\\[/tex]

replace y with x

[tex]x=41y^3+a\\[/tex]

make y the subject of the formula:

[tex]x = 41y^3+a\\41y^3 = x-a\\y^3 = \frac{x-a}{41} \\y = \sqrt[3]{\frac{x-a}{41} }[/tex]

Replace y with [tex]g^{-1}(x)[/tex]

[tex]g^{-1}(x) = \sqrt[3]{\frac{x-a}{41} }[/tex]

Hence the inverse function [tex]g^{-1}(x) = \sqrt[3]{\frac{x-a}{41} }[/tex]

No restriction on the domain of g(x). Hence the correct option is A

Answer:

the answer is A

Explanation:

i did the test already on edg

ACCESS MORE