Answer:
1. [tex]n: n^3 > 0[/tex] is not true for negative integers
2. [tex]45\ and\ 45[/tex] show that all angles do not have different measure
3. [tex]Fraction = \frac{1}{3}[/tex]
Step-by-step explanation:
Solving (1):
[tex]n: n^3 > 0[/tex]
Take
[tex]n = -1[/tex]
[tex]-1^3 = -1[/tex]
[tex]n: n^3 > 0[/tex] is not true for negative integers
Solving (2):
The angles of a right angled triangle are:
[tex]45, 45\ and\ 90[/tex]
[tex]45\ and\ 45[/tex] show that all angles do not have different measure
Solving (3):
When
[tex]Bills = 48[/tex]
[tex]Counterfeit = 16[/tex]
The fraction is calculated as thus:
[tex]Fraction = \frac{Counterfeit}{Bills}[/tex]
[tex]Fraction = \frac{16}{48}[/tex]
[tex]Fraction = \frac{1}{3}[/tex]
Similarly, when
[tex]Bills = 39[/tex]
[tex]Counterfeit = 13[/tex]
[tex]Fraction = \frac{Counterfeit}{Bills}[/tex]
[tex]Fraction = \frac{13}{39}[/tex]
[tex]Fraction = \frac{1}{3}[/tex]