Answer:
a. [tex]C(25) = 146.25[/tex]
b. [tex]C(100) = 165[/tex]
c. [tex]x = 187[/tex]
d. Increment in number of uniform causes an increment in price
Step-by-step explanation:
Given
[tex]C(x) = 140 + 0.25x[/tex]
Solving (a)
[tex]x = 25[/tex]
This gives:
[tex]C(x) = 140 + 0.25x[/tex]
[tex]C(25) = 140 + 0.25 * 25[/tex]
[tex]C(25) = 140 + 6.25[/tex]
[tex]C(25) = 146.25[/tex]
Solving (b):
[tex]x = 100[/tex]
This gives:
[tex]C(x) = 140 + 0.25x[/tex]
[tex]C(100) = 140 + 0.25 * 100[/tex]
[tex]C(100) = 140 + 25[/tex]
[tex]C(100) = 165[/tex]
Solving (c):
Average cost = $1 per logo
For x logos,
Average cost = $1 * x
Average cost = $x
So, we have:
[tex]C(x) = 140 + 0.25x[/tex]
[tex]x = 140 + 0.25x[/tex]
Collect Like Terms
[tex]x - 0.25x = 140[/tex]
[tex]0.75x = 140[/tex]
Solve for x
[tex]x = 140/0.75[/tex]
[tex]x = 187[/tex] ---- Approximated
Solving (d): What happens when number uniform increases.
Notice that in (a) & (b).
x increases from 25 to 100
Price also increases from $146.25 to $165.
Hence:
Increment in number of uniform causes an increment in price