Which statement describes the inverse of m(x) = x^2 – 17x?


a. The domain restriction x ≥ StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction minus StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


b. The domain restriction x ≥ StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction + StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


c. The domain restriction x ≥ Negative StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction minus StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


d.The domain restriction x ≥ Negative StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction + StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .

Respuesta :

Given:

The function is

[tex]m(x)=x^2-17x[/tex]

To find:

The inverse of the given function.

Solution:

We have,

[tex]m(x)=x^2-17x[/tex]

Substitute m(x)=y.

[tex]y=x^2-17x[/tex]

Interchange x and y.

[tex]x=y^2-17y[/tex]

Add square of half of coefficient of y , i.e., [tex]\left(\dfrac{-17}{2}\right)^2[/tex] on both sides,

[tex]x+\left(\dfrac{-17}{2}\right)^2=y^2-17y+\left(\dfrac{-17}{2}\right)^2[/tex]

[tex]x+\left(\dfrac{17}{2}\right)^2=y^2-17y+\left(\dfrac{17}{2}\right)^2[/tex]

[tex]x+\left(\dfrac{17}{2}\right)^2=\left(y-\dfrac{17}{2}\right)^2[/tex]        [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]

Taking square root on both sides.

[tex]\sqrt{x+\left(\dfrac{17}{2}\right)^2}=y-\dfrac{17}{2}[/tex]

Add [tex]\dfrac{17}{2}[/tex] on both sides.

[tex]\sqrt{x+\left(\dfrac{17}{2}\right)^2}+\dfrac{17}{2}=y[/tex]

Substitute [tex]y=m^{-1}(x)[/tex].

[tex]m^{-1}(x)=\sqrt{x+(\dfrac{189}{4}})+\dfrac{17}{2}[/tex]

We know that, negative term inside the root is not real number. So,

[tex]x+\left(\dfrac{17}{2}\right)^2\geq 0[/tex]

[tex]x\geq -\left(\dfrac{17}{2}\right)^2[/tex]

Therefore, the restricted domain is [tex]x\geq -\left(\dfrac{17}{2}\right)^2[/tex] and the inverse function is [tex]m^{-1}(x)=\sqrt{x+(\dfrac{189}{4}})+\dfrac{17}{2}[/tex].

Hence, option D is correct.

Note: In all the options square of [tex]\dfrac{17}{2}[/tex] is missing in restricted domain.

Answer:

C on edu

Step-by-step explanation:

ACCESS MORE