Respuesta :
Given:
The function is
[tex]m(x)=x^2-17x[/tex]
To find:
The inverse of the given function.
Solution:
We have,
[tex]m(x)=x^2-17x[/tex]
Substitute m(x)=y.
[tex]y=x^2-17x[/tex]
Interchange x and y.
[tex]x=y^2-17y[/tex]
Add square of half of coefficient of y , i.e., [tex]\left(\dfrac{-17}{2}\right)^2[/tex] on both sides,
[tex]x+\left(\dfrac{-17}{2}\right)^2=y^2-17y+\left(\dfrac{-17}{2}\right)^2[/tex]
[tex]x+\left(\dfrac{17}{2}\right)^2=y^2-17y+\left(\dfrac{17}{2}\right)^2[/tex]
[tex]x+\left(\dfrac{17}{2}\right)^2=\left(y-\dfrac{17}{2}\right)^2[/tex] [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]
Taking square root on both sides.
[tex]\sqrt{x+\left(\dfrac{17}{2}\right)^2}=y-\dfrac{17}{2}[/tex]
Add [tex]\dfrac{17}{2}[/tex] on both sides.
[tex]\sqrt{x+\left(\dfrac{17}{2}\right)^2}+\dfrac{17}{2}=y[/tex]
Substitute [tex]y=m^{-1}(x)[/tex].
[tex]m^{-1}(x)=\sqrt{x+(\dfrac{189}{4}})+\dfrac{17}{2}[/tex]
We know that, negative term inside the root is not real number. So,
[tex]x+\left(\dfrac{17}{2}\right)^2\geq 0[/tex]
[tex]x\geq -\left(\dfrac{17}{2}\right)^2[/tex]
Therefore, the restricted domain is [tex]x\geq -\left(\dfrac{17}{2}\right)^2[/tex] and the inverse function is [tex]m^{-1}(x)=\sqrt{x+(\dfrac{189}{4}})+\dfrac{17}{2}[/tex].
Hence, option D is correct.
Note: In all the options square of [tex]\dfrac{17}{2}[/tex] is missing in restricted domain.