Respuesta :
Answer:
a
The confidence interval for the population variance is [tex] 5.49 < \sigma^2 < 37.02 [/tex]
The correct option is C
b
The confidence interval for the population standard deviation is [tex] 2.34 < \sigma < 6.08 [/tex]
The correct option is A
Step-by-step explanation:
From the question we are told that
The sample size is n = 14
The standard deviation is [tex]s = \$3.42[/tex]
Generally the degree of freedom is mathematically represented as
[tex]df = 14 -1[/tex]
=> [tex]df = 13 [/tex]
Given that the confidence level is 98% then that level of significance is
[tex]\alpha = (100 -98) \%[/tex]
=> [tex]\alpha = 0.02[/tex]
Generally the 98% confidence interval for the variance is mathematically represented as
[tex]\frac{(n- 1) s^2}{x^2 _{[\frac{\alpha }{2} , df]}} < \sigma^2 < \frac{(n- 1) s^2}{x^2 _{[1- \frac{\alpha }{2} , df]}}[/tex]
=> [tex]\frac{(14- 1) (3.42)^2}{x^2 _{[\frac{0.02 }{2} , 13]}} < \sigma^2 < \frac{(14- 1) (3.42)^2}{x^2 _{[1- \frac{0.02 }{2} , 13]}}[/tex]
From the chi -distribution table
[tex]x^2 _{[1- \frac{0.02 }{2} , 13]} = 4.107[/tex]
and
[tex]x^2 _{[\frac{0.02 }{2} , 13]} = 27.689[/tex]
So
=> [tex]\frac{(14- 1) (3.42)^2}{27.689} < \sigma^2 < \frac{(14- 1) (3.42)^2}{4.107}[/tex]
=> [tex] 5.49 < \sigma^2 < 37.02 [/tex]
Generally the 98% confidence interval for the standard deviation is mathematically represented as
[tex]\sqrt{\frac{(n- 1) s^2}{x^2 _{[\frac{\alpha }{2} , df]}}} < \sigma <\sqrt{ \frac{(n- 1) s^2}{x^2 _{[1- \frac{\alpha }{2} , df]}}}[/tex]
=> [tex]\sqrt{5.49} < \sigma < \sqrt{37.02 }[/tex]
=> [tex] 2.34 < \sigma < 6.08 [/tex]