Respuesta :

Given :

  • There is a quadrilateral.
  • Two sides of the quadrilateral are parallel .
  • Four angles are 96° , 2x° , 94° & ( 3y + 44 )°.

To Find :-

  • The value of x & y .

Solution :-

Here , 96° & 2x° are co - interior angles and we know that the sum of co - Interior angles is 180°.

⇒ 96° + 2x = 180° .

⇒ 2x = 180° - 96° .

⇒ 2x = 84° .

⇒ x = [tex]\red{\sf \dfrac{84^{\circ}}{2}}[/tex]

[tex]\bf\longmapsto x = 42^{\circ}[/tex]

Hence value of x is 42° .

Similarly , 94° & ( 3y + 44) ° are co- interior angles

⇒ 94° + ( 3y + 44)° = 180° .

⇒ ( 3y + 44 )° = 180° - 94° .

⇒ 3y + 44° = 86°.

⇒ 3y = 86° - 44° .

⇒ 3y = 42° .

⇒ y = [tex]\sf \red{\dfrac{42^{\circ}}{3}}[/tex]

[tex]\bf\longmapsto y = 14^{\circ}[/tex]

Hence the value of y is 14°.