Complete Question
The complete question is shown on the first and second uploaded image
Answer:
There is a change in the electric field by this factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]
Explanation:
From the question we are told that
The electric field is [tex]E(r)_1 = [\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}[/tex]
Now when the outer diameter is doubled, the radius(b) is also doubled
So
[tex]E(r)_2 = [\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}[/tex]
Now
[tex]\frac{E(r)_2}{E(r)_1} = \frac{\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}}{\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}}[/tex]
=> [tex]\frac{E(r)_2}{E(r)_1} = \frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r} * \frac{ ln(2b) -ln(a)}{V_o} ] * \frac{r}{1}[/tex]
=> [tex]\frac{E(r)_2}{E(r)_1} =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]
[tex]=> E(r)_2 =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]} }{E(r)_1}[/tex]
Here we see that the electric field changes by the factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]