5. In Investigation 2, if everything stays the same, except the diameter of the outer ring is doubled, how does the electric field change?

Respuesta :

Complete Question

The complete question is shown on the first and second uploaded image

Answer:

There is a change in the electric field by this factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]

Explanation:

From the question we are told that

  The electric field is  [tex]E(r)_1 =  [\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}[/tex]

    Now when the outer diameter is doubled, the radius(b) is also doubled

So

    [tex]E(r)_2 =  [\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}[/tex]

Now

      [tex]\frac{E(r)_2}{E(r)_1}  =  \frac{\frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r}}{\frac{V_o}{ln(2b) -ln(a)} ] * \frac{1}{r}}[/tex]

=>   [tex]\frac{E(r)_2}{E(r)_1}  =  \frac{V_o}{ln(b) -ln(a)} ] * \frac{1}{r} * \frac{ ln(2b) -ln(a)}{V_o} ] * \frac{r}{1}[/tex]

=>  [tex]\frac{E(r)_2}{E(r)_1}  =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]

[tex]=> E(r)_2 =\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]} }{E(r)_1}[/tex]

Here we see that the electric field changes by the factor [tex]\frac{ln[\frac{b}{a} ]}{ln[\frac{2b}{a} ]}[/tex]

Ver imagen okpalawalter8
Ver imagen okpalawalter8
RELAXING NOICE
Relax