You measure the radius of a sphere as (6.45 ± 0.30) cm, and you measure its mass as (1.79 ± 0.08) kg. What is the density and uncertainty in the density of the sphere, in kilograms per cubic meter?

Respuesta :

Answer:

[tex](1630.13\pm 300.10)\ kg/m^3[/tex]

Explanation:

Given that,

The radius of a sphere is (6.45 ± 0.30) cm

Mass of the sphere is (1.79 ± 0.08) kg

Density = mass/volume

For sphere,

[tex]d=\dfrac{m}{V}\\\\d=\dfrac{m}{\dfrac{4}{3}\pi r^3}\\\\d=\dfrac{1.79\ kg}{\dfrac{4}{3}\pi (6.4\times 10^{-2}\ m)^3}\\\\d=1630.13\ kg/m^3[/tex]

We can find the uncertainty in volume as follows :

[tex]\dfrac{\delta V}{V}=3\dfrac{\delta r}{r}\\\\=3\times \dfrac{0.3\times 10^{-2}}{6.45\times 10^{-2}}\\\\=0.1395[/tex]

Uncertainty in mass,

[tex]\dfrac{\delta m}{m}=\dfrac{0.08}{1.79}\\\\=0.0446[/tex]

Now, the uncertainty in density of sphere is given by :

[tex]\dfrac{\delta d}{d}=\dfrac{\delta m}{m}+\dfrac{\delta V}V}\\\\=0.0446+0.1395\\\\\dfrac{\delta d}{d}=0.1841\\\\\delta d=0.1841\times d\\\\\delta d=0.1841\times 1630.13\\\\\delta d = 300.10\ kg/m^3[/tex]

Hence, the density pf the sphere is [tex](1630.13\pm 300.10)\ kg/m^3[/tex]

ACCESS MORE