Compute the values of the diffusion coefficients for the interdiffusion of carbon in both α-iron (BCC) and γ-iron (FCC) at 900°C. Which is larger? Explain why this is the case.

Respuesta :

Answer:

α-iron (BCC) has faster diffusion rate because of lower values in activation energy and pre-exponential value.

Explanation:

Taking each parameters or data at a time, we can determine the values/a constant for each parameters in the diffusion coefficient equation.

For α-iron (BCC), the diffusion coefficient = pre-exponential value,Ao × e^( -Activation energy,AE)/gas constant,R × Temperature.

Converting the given Temperature, that is 900°C to Kelvin which is equals to 1173.15K.

For α-iron (BCC), the pre-exponential value, Ao = 1.1 × 10^-6, and the activation energy, AE = 87400.

Thus, we have that the diffusion coefficient = 1.1 × 10^-6 × e(-87400)/1173.15 × 8.31.

Diffusion coefficient for α-iron (BCC) = 1.41 × 10^-10 m^2/s.

Also, For the γ-iron (FCC), the pre-exponential value, Ao = 2.3 × 10^-5 and the activation energy, AE = 148,00.

From these values we can see that both the exponential value, Ao and the activation energy for γ-iron (FCC) are higher than that of α-iron (BCC).

Thus, the diffusion coefficient for the γ-iron (FCC) = 2.3 × 10^-5 × e ^-(14800)/8.31 × 1173.15.

Then, the diffusion coefficient for the γ-iron (FCC) = 5.87 × 10^-12 m2/s.

Therefore, there will be faster diffusion in α-iron (BCC) because of lower activation energy and vice versa.

ACCESS MORE