Answer:
[tex]P(X = 5) = 0.166[/tex]
Step-by-step explanation:
Given
[tex]Mean = 4.3[/tex]
[tex]x = 5[/tex]
Required
Determine the probability that the order is 5
This question can be answered using Poisson distribution.
[tex]P(X = x) = \frac{\alpha ^x e^{-\alpha}}{x!}[/tex]
Where
[tex]\alpha[/tex] is used to represent the mean
and
[tex]\alpha = 4.3[/tex]
[tex]x = 5[/tex]
[tex]e = 2.71828[/tex] ---- Euler's constant
So, we have:
[tex]P(X = x) = \frac{\alpha ^x e^{-\alpha}}{x!}[/tex]
[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{5!}[/tex]
[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{5* 4 * 3 * 2 *1}[/tex]
[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{120}[/tex]
[tex]P(X = 5) = \frac{1470.08443 * 0.01356859825}{120}[/tex]
[tex]P(X = 5) = \frac{19.9469850243}{120}[/tex]
[tex]P(X = 5) = 0.1662248752[/tex]
[tex]P(X = 5) = 0.166[/tex] Approximated