The auto parts department of an automotive dealership sends out a mean of 4.34.3 special orders daily. What is the probability that, for any day, the number of special orders sent out will be exactly 55

Respuesta :

Answer:

[tex]P(X = 5) = 0.166[/tex]

Step-by-step explanation:

Given

[tex]Mean = 4.3[/tex]

[tex]x = 5[/tex]

Required

Determine the probability that the order is 5

This question can be answered using Poisson distribution.

[tex]P(X = x) = \frac{\alpha ^x e^{-\alpha}}{x!}[/tex]

Where

[tex]\alpha[/tex] is used to represent the mean

and

[tex]\alpha = 4.3[/tex]

[tex]x = 5[/tex]

[tex]e = 2.71828[/tex] ---- Euler's constant

So, we have:

[tex]P(X = x) = \frac{\alpha ^x e^{-\alpha}}{x!}[/tex]

[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{5!}[/tex]

[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{5* 4 * 3 * 2 *1}[/tex]

[tex]P(X = 5) = \frac{4.3^5 * 2.71828^{-4.3}}{120}[/tex]

[tex]P(X = 5) = \frac{1470.08443 * 0.01356859825}{120}[/tex]

[tex]P(X = 5) = \frac{19.9469850243}{120}[/tex]

[tex]P(X = 5) = 0.1662248752[/tex]

[tex]P(X = 5) = 0.166[/tex] Approximated

ACCESS MORE