Respuesta :

Complete Question

find a vector function that represents the curve of intersection of the two surfaces. The cylinder  [tex]x^2+y^2= 36[/tex] an the surface [tex]z=xy[/tex]

Answer:

The function is  [tex]r(t) =  6cos(t) \ i + 6sin (t) \ j +  36costsint \ k[/tex]

Step-by-step explanation:

From the question we are told that

   The equation of the cylinder is  [tex]x^2+y^2= 36[/tex]

   The equation of the surface is  z = xy

Generally the general form of this  function is  

      [tex]r(t) =  x(t)i + y(t)j +  z(t) k[/tex]

Generally to confirm the RHS and the LHS of the equation for the cylinder

Let take x (t) =  6cos(t)

and        y(t) = 6sin (t)

So

        [tex]x^2  +  y^2  = [ 6cos(t)]^2 + [6 sin (t)]^2[/tex]

=>     [tex]x^2  +  y^2  = 6^2 cos^2t + 6^2 sin ^2t[/tex]

=>      [tex]x^2  +  y^2  = 6^2 [cos^2t +  sin ^2t] [/tex]    

Generally  [tex]cos^2t +  sin ^2t = 1[/tex]

So

        [tex]x^2  +  y^2  = 36[/tex]  

So at  x (t) =  6cos(t) and  y(t) = 6sin (t) the RHS is equal to LHS

  So

   [tex]z(t) = x(t) *  y(t)[/tex]

    [tex]z(t) = (6 cos(t)) *  (6 sin(t))[/tex]

=>     [tex]z(t) =36costsint[/tex]

So the function is  

     [tex]r(t) =  6cos(t) i + 6sin (t) j +  36costsint k[/tex]

   

ACCESS MORE