Respuesta :
Answer:
The answer is "7.73 kip-ft".
Explanation:
Using this equation, calculate the polar moment of shaft inertia:
[tex]J= \frac{\pi }{32} d^4\\\\[/tex]
[tex]= \frac{\pi}{ 32} \times 6^4\\\\= 127.234 \ \ in^4[/tex]
Equate the number of moments in x:
[tex]\sum M_x =0[/tex]
[tex]\to T_A-T_B +T_C+T_D =0\\\\\to T_A-40 +20+T_D =0[/tex]
Calculate the torsional response at A using the superposition method:
[tex]\to \phi_A =(\phi_A)_{T} - (\phi_A)_{T_A}\\\\[/tex]
[tex]= \frac{T_B L_{BC}}{JG}+ \frac{T_C L_{CD}}{JG} - \frac{T_A L_{AD}}{JG}\\\\[/tex]
[tex]0.05= \frac{40 \times 12 \times 2 \times 12}{127.234 \times 11 \times 10^3}+ \frac{20 \times 12 \times 1.5 \times 12 }{127.234 \times 11 \times 10^3} - \frac{T_A \times 12 \times 5 \times 12}{127.234 \times 11 \times 10^3}[/tex]
[tex]0.05= (8.22 \times 10^{-3})+ (3.086 \times 10^{-3})- (5.14 \times 10^{-4} \ T_A)\\\\[/tex]
[tex]\to T_A =12.27 kip \ ft \\\\[/tex]
The torsional answer in help A is 12.27 kip- ft. It replace the necessary equation values:
[tex]\to T_A-40 +20+T_D =0 \\\\\to 12.27-40+20+T_D=0\\\\T_D=7.73 kip \ ft[/tex]
The torsional reactions at the given supports are;
T_a = 12.3 Kip.ft and T_d = 7.7 Kip.ft
What are Torsional Reactions from Torque?
From the image of the shaft attached, if we take a free body diagram and torsion about x, we will have;
∑Mₓ = 0;
T_a + T_d + 20 - 40 = 0 -----(1)
Using the method of superposition, we have;
Φ_a = (Φ_a)_T - (Φ_a)_T_a
Formula for rotation Φ is;
Φ = TL/(JG)
Thus;
0.005 = [tex][\frac{40 * 12 * 2 * 12}{(\pi/2) *3^{4} * 11 * 10^{3}} + \frac{20 * 12 * 1.5 * 12}{(\pi/2) *3^{4} * 11 * 10^{3}}] - \frac{T_{A} * 12 * 5 * 12}{(\pi/2) *3^{4} * 11 * 10^{3}}[/tex]
Solving for T_a in this gives;
T_a = 12.3 Kip.ft
Thus, from eq 1;
12.3 + T_d + 20 - 40 = 0
T_d = 20 - 12.3
T_d = 7.7 Kip.ft
Read more about Torsional reactions from torque at; https://brainly.com/question/20691242
![Ver imagen AFOKE88](https://us-static.z-dn.net/files/d38/5253f481859dd8244d25944d2e09bb9c.jpg)