Respuesta :

Answer:

y  = [tex]\frac{4}{5} x[/tex] - 8

y = -[tex]\frac{5x}{4}[/tex] + 3

y  = [tex]\frac{2}{3} x[/tex] - 8

y = [tex]\frac{-3}{2}x - 8[/tex]

Step-by-step explanation:

To know the pairs that are perpendicular lines, we need to understand what makes a line perpendicular to another.

Perpendicular lines generally have slopes;

      m and [tex]-\frac{1}{m}[/tex]

So, any of the pairs with a negative inverse value of slope will be perpendicular.

     y  = [tex]\frac{4}{5} x[/tex] - 8         slope = [tex]\frac{4}{5}[/tex]

     y = [tex]-\frac{5x}{4} + 3[/tex]       slope  = [tex]-\frac{5}{4}[/tex]

We see they are negative inverses

     y  = [tex]\frac{2}{3} x[/tex] - 8         slope  = [tex]\frac{2}{3}[/tex]

     y = [tex]\frac{-3}{2}x - 8[/tex]        slope = [tex]-\frac{3}{2}[/tex]

These are also negative inverses.

ACCESS MORE