Respuesta :

Answers:

y = -25

y = 7

Step-by-step explanation:

Find the derivative of the function.

[tex]\frac{dy}{dx} y = 3x^2-6x-9[/tex]  

The zeros of the derivative are the local extrema (Maximum & Minimum)

[tex]0 = 3x^2-6x-9[/tex]

Take out the greatest common factor, 3, to get this equation:

[tex]0 = 3(x^2-2x-3)[/tex]

Factor out the brackets.

[tex]0 = 3(x - 3) ( x + 1 )[/tex]

You are left with two possible values for x:

x = 3

x = -1

By substituting each value into the original function [tex]y = x^3 - 3x^2 - 9x + 2[/tex], you get the equation of any horizontal tangents to the curve.

When x = 3:

[tex]y = (3)^3 - 3(3)^2 - 9(3) + 2 = -25[/tex]       Meaning y = -25

When x = -1:

[tex]y = (-1)^3 - 3(-1)^2 - 9(-1) + 2 = 7[/tex]    Meaning  y = 7

ACCESS MORE