Answer:
[tex]x = \frac{ln(k)}{5}[/tex]
Explanation:
Given
[tex]e^{5x} = k[/tex]
Required
Solve for x
[tex]e^{5x} = k[/tex]
Take natural logarithm of both sides:
[tex]ln(e^{5x}) = ln(k)[/tex]
Apply law of logarithm:
[tex]ln(e^{f(x)}) = f(x)[/tex]
So, we have:
[tex]ln(e^{5x}) = ln(k)[/tex]
[tex]5x = ln(k)[/tex]
Divide through by 5
[tex]x = \frac{ln(k)}{5}[/tex]