unit 3 parallel and perpendicular lines homework 4 parallel line proofs
PLEASE HELP!!!!!!!!!!!
100 points!!!!!!!


Answer:
1) c ║ d by consecutive interior angles theorem
2) m∠3 + m∠6 = 180° by transitive property
3) ∠2 ≅ ∠5 by definition of congruency
4) t ║ v [tex]{}[/tex] Corresponding angle theorem
5) ∠14 and ∠11 are supplementary [tex]{}[/tex] Definition of supplementary angles
6) ∠8 and ∠9 are supplementary [tex]{}[/tex] Consecutive interior angles theorem
Step-by-step explanation:
1) Statement [tex]{}[/tex] Reason
m∠4 + m∠7 = 180° [tex]{}[/tex] Given
m∠4 ≅ m∠6 [tex]{}[/tex] Vertically opposite angles
m∠4 = m∠6 [tex]{}[/tex] Definition of congruency
m∠6 + m∠7 = 180° [tex]{}[/tex] Transitive property
m∠6 and m∠7 are supplementary [tex]{}[/tex] Definition of supplementary angles
∴ c ║ d [tex]{}[/tex] Consecutive interior angles theorem
2) Statement [tex]{}[/tex] Reason
m∠3 = m∠8 [tex]{}[/tex] Given
m∠8 + m∠6 = 180° [tex]{}[/tex] Sum of angles on a straight line
∴ m∠3 + m∠6 = 180° [tex]{}[/tex] Transitive property
3) Statement [tex]{}[/tex] Reason
p ║ q [tex]{}[/tex] Given
∠1 ≅ ∠5 [tex]{}[/tex] Given
∠1 = ∠5 [tex]{}[/tex] Definition of congruency
∠2 ≅ ∠1 [tex]{}[/tex] Alternate interior angles theorem
∠2 = ∠1 [tex]{}[/tex] Definition of congruency
∠2 = ∠5 [tex]{}[/tex] Transitive property
∠2 ≅ ∠5 [tex]{}[/tex] Definition of congruency.
4) Statement [tex]{}[/tex] Reason
∠1 ≅ ∠5 [tex]{}[/tex] Given
∠3 ≅ ∠4 [tex]{}[/tex] Given
∠1 = ∠5 [tex]{}[/tex] Definition of congruency
∠3 = ∠4 [tex]{}[/tex] Definition of congruency
∠5 ≅ ∠4 [tex]{}[/tex] Vertically opposite angles
∠5 = ∠4 [tex]{}[/tex] Definition of congruency
∠5 = ∠3 [tex]{}[/tex] Transitive property
∠1 = ∠3 [tex]{}[/tex] Transitive property
∠1 ≅ ∠3 [tex]{}[/tex] Definition of congruency.
t ║ v [tex]{}[/tex] Corresponding angle theorem
5) Statement [tex]{}[/tex] Reason
∠5 ≅ ∠16 [tex]{}[/tex] Given
∠2 ≅ ∠4 [tex]{}[/tex] Given
∠5 = ∠16 [tex]{}[/tex] Definition of congruency
∠2 = ∠4 [tex]{}[/tex] Definition of congruency
EF ║ GH [tex]{}[/tex] Corresponding angle theorem
∠14 ≅ ∠16 [tex]{}[/tex] Corresponding angles
∠14 = ∠16 [tex]{}[/tex] Definition of congruency
∠5 = ∠14 [tex]{}[/tex] Transitive property
∠5 + ∠11 = 180° [tex]{}[/tex] Sum of angles on a straight line
∠14 + ∠11 = 180° [tex]{}[/tex] Transitive property
∠14 and ∠11 are supplementary [tex]{}[/tex] Definition of supplementary angles
6) Statement [tex]{}[/tex] Reason
l ║ m [tex]{}[/tex] Given
∠4 ≅ ∠7 [tex]{}[/tex] Given
∠4 = ∠7 [tex]{}[/tex] Definition of congruency
∠2 ≅ ∠7 [tex]{}[/tex] Alternate angles
∠2 = ∠7 [tex]{}[/tex] Definition of congruency
∠2 = ∠4 [tex]{}[/tex] Transitive property
∠2 ≅ ∠4 [tex]{}[/tex] Definition of congruency
∠2 and ∠4 are corresponding angles [tex]{}[/tex] Definition
DA ║ EB [tex]{}[/tex] Corresponding angle theorem
∠8 and ∠9 are consecutive interior angles [tex]{}[/tex] Definition
∠8 and ∠9 are supplementary [tex]{}[/tex] Consecutive interior angles theorem.