Select all of the domain values that would result in a denominator of zero for the equation
x/x-2 + 1/x-6 = 4/x^2-8x+12
![Select all of the domain values that would result in a denominator of zero for the equation xx2 1x6 4x28x12 class=](https://us-static.z-dn.net/files/dc7/ef1cf5edad5047c4fa5c44d3df9d7ef5.png)
Answer:
Options (4) and (5)
Step-by-step explanation:
Given equation is,
[tex]\frac{x}{x-2}+\frac{1}{x-6}=\frac{4}{x^2-8x+12}[/tex]
[tex]\frac{x(x-6)+(x-2)}{(x-2)(x-6)}=\frac{4}{x^2-8x+12}[/tex]
[tex]\frac{x^2-5x-2}{(x-2)(x-6)}=\frac{4}{x^2-6x-2x+12}[/tex]
[tex]\frac{x^2-5x-2}{(x-2)(x-6)}=\frac{4}{x(x-6)-2(x-6)}[/tex]
[tex]\frac{x^2-5x-2}{(x-2)(x-6)}=\frac{4}{(x-2)(x-6)}[/tex]
[tex]\frac{x^2-5x-2}{(x-2)(x-6)}-\frac{4}{(x-2)(x-6)}=0[/tex]
[tex]\frac{x^2-5x-6}{(x-2)(x-6)}=0[/tex]
Therefore, domain values that will result in a denominator of zero for the equation will be,
(x - 2) = 0 ⇒ x = 2
(x - 6) = 0 ⇒ x = 6
Therefore, options (4) and (5) will be the correct options.