Respuesta :
square root 18x^7y^6
=(18x^7y^6)^1/2
(9*2*x^6*X*y^6)^1/2
= 3 x3y3 • sqrt(2x)
hope this helps
=(18x^7y^6)^1/2
(9*2*x^6*X*y^6)^1/2
= 3 x3y3 • sqrt(2x)
hope this helps
Answer:
To find the square root of [tex]18x^7y^6[/tex] i.e, [tex]\sqrt{18x^7y^6}[/tex]
Using radical rules:
[tex]\sqrt[n]{a^n} = a[/tex]
[tex](a^m)^{\frac{1}{n}} = a^{\frac{m}{n}}[/tex]
we can write:
[tex]18 = 3 \cdot 3 \cdot 2 = 3^2 \cdot 2[/tex]
[tex]x^7 = x^6 \cdot x[/tex]
then;
[tex]\sqrt{18x^7y^6}[/tex] = [tex]\sqrt{3^2 \cdot 2 \cdot x^6 \cdot x \cdot y^6}[/tex]
Apply the rules we have;
[tex]3 \cdot x^3 \cdot y^3 \cdot \sqrt{2x}[/tex]
or
[tex]3x^3y^3\sqrt{2x}[/tex]
therefore, [tex]3x^3y^3\sqrt{2x}[/tex] is equal to [tex]\sqrt{18x^7y^6}[/tex]