Answer:
Explanation:
Given that:
p = 6.17 × 10⁻³⁰ Cm
Electric field E = 94.7 × 10⁻⁶ N/C
Then:
[tex]U= -p^{\to} *E^{\to}[/tex]
[tex]U_i = -pE \ cos180^0 =pE \\ \\ U_f = -pE \ cos 0^0 = -pE[/tex]
∴
[tex]\Delta U = U_i - U_f = 2pE \ \ per \ dilute/per \ switch[/tex]
This implies that one switch of dipole produces 2pE energy to be deposited in the water.
mass of water = 13.1 g
The number of water molecule = [tex]\dfrac{mass}{molar \ mass}\times N_A[/tex]
=[tex]\dfrac{13.1}{18.015}\times6.023 \times 10^{23}[/tex]
= 4.38 × 10²³ molecules of water.
∴ Number of dipoles = 4.38 × 10²³
The total number of switches in 2.39 sec = switch frequency × 2.73
Number of switches = 2.39 × 3.42 × 10⁸
Number of switches = 817380000
Number of switches = 8.174 × 10⁸
The total energy Q deposited = Energy deposited per dipole × Number of dipole × no of switches
Q = (2pE) × 4.38 × 10²³ × 8.174 × 10⁸
Q = (2 × 6.17 × 10⁻³⁰ × 94.7 × 10⁻⁶ × 4.38 × 10²³ × 8.174 × 10⁸ )
Q = 0.41838 J