Answer:
The answer is below
Step-by-step explanation:
Let Q represent the amount of salt in the tank at time t.
[tex]\frac{dQ}{dt}= flow\ in - flow\ out\\ \\flow\ in=3\ gal/min*2\ lb/gal=6\ lb/min\\\\net\ gain\ in\ tank\ volume=3-4=-1, henceflow\ out= \frac{4Q}{100-t} \\\\\frac{dQ}{dt}= 6-\frac{4Q}{100-t} \\\\\frac{dQ}{dt}+ \frac{4Q}{100-t}=6\\\\The \ integrating\ factor\ is:\\\\IF=e^{\int\limits {\frac{4}{100-t} } \, dt }=e^{-4\int\limits {\frac{-1}{100-t}}=e^{-4ln(100-t)}=(100-t)^{-4}}\\\\Multiplying\ through \ by\ IF: \\\\(100-t)^{-4}\frac{dQ}{dt}+ (100-t)^{-4}\frac{4Q}{100-t}=6(100-t)^{-4}\\\\[/tex]
[tex]Integrating:\\\\A(100-t)^{-4}=-2(100-t)^{-3}+c\\\\A=-2(100-t)+\frac{c}{(100-t)^{-4}} \\\\at, t=0,A=0\\\\0=-2(100-0)+\frac{c}{(100-0)^{-4}}\\\\c=0.02\\\\A=-2(100-t)+\frac{0.02}{(100-t)^{-4}}[/tex]