Respuesta :
Answer:
The amount that can be withdrawn each month from your account assuming a 25-year withdrawal period is $14,278.02.
Explanation:
The total amount saved for 30 years after retirement can be estimated by employing the formula for calculating the future value (FV) of ordinary annuity for both stock and bond as follows:
Future Value of Stock
FVs = M * (((1 + r)^n - 1) / r) ................................. (1)
Where,
FVs = Future value of the amount invested in stock after 30 years =?
M = Monthly investment = $780
r = Monthly return rate = 9.8% / 12 = 0.098 / 12 = 0.00816666666666667
n = number of months = 30 years * 12 months = 360
Substituting the values into equation (1), we have:
FVs = $780 * (((1 + 0.00816666666666667)^360 - 1) / 0.00816666666666667)
FVs = $780 * 2,166.28572458476
FVs = $1,689,702.87
Future Value of Bond
FVb = M * (((1 + r)^n - 1) / r) ................................. (2)
Where,
FVb = Future value of the amount invested in bond after 30 years =?
M = Monthly investment = $380
r = Monthly interest rate = 5.8% / 12 = 0.058 / 12 = 0.00483333333333333
n = number of months = 30 years * 12 months = 360
Substituting the values into equation (2), we have:
FVb = $380 * (((1 + 0.00483333333333333)^360 - 1) / 0.00483333333333333)
FVb = $380 * 966.933721691683
FVb = $367,434.81
Calculation of the amount that can be withdrawn monthly for 25-year withdrawal period
This can be calculated by employing the formula for calculating the present value of an ordinary annuity as follows:
PV = P * ((1 - (1 / (1 + r))^n) / r) …………………………………. (3)
Where;
PV = Sum of present values of stock and bond investments after retirement = FVs + FVb = $1,689,702.87 + $367,434.81 = $2,057,137.68
P = Monthly withdrawal = ?
r = Monthly interest rate = APR / 12 = 6.8% ÷ 12 = 0.068 / 12 = 0.00566666666666667
n = number of months = 25 years * 12 months = 300
Substitute the values into equation (3) and solve for P, we have:
$2,057,137.68 = P * ((1 - (1 / (1 + 0.00566666666666667))^300) / 0.00566666666666667)
$2,057,137.68 = P * 144.077250670093
P = $2,057,137.68 / 144.077250670093
P = $14,278.02
Therefore, the amount that can be withdrawn each month from your account assuming a 25-year withdrawal period is $14,278.02.
Otras preguntas
