Consider the paraboloid z=x2+y2. The plane 8x−5y+z−2=0 cuts the paraboloid, its intersection being a curve. Find "the natural" parametrization of this curve. Hint: The curve which is cut lies above a circle in the xy-plane which you should parametrize as a function of the variable t so that the circle is traversed counterclockwise exactly once as t goes from 0 to 2*pi, and the parameterization starts at the point on the circle with largest x coordinate. Using that as your starting point, give the parametrization of the curve on the surface.

c(t)=(x(t),y(t),z(t)), wherex(t)=y(t)=z(t)=

Respuesta :

Answer:

The parametrization of the curve on the surface is

[tex]c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ][/tex]

Where

   [tex]x =  \frac{\sqrt{97} }{2} cost - 4[/tex]

    [tex]y = \frac{\sqrt{97} }{2}  sint  + \frac{5}{2}[/tex]

[tex]z = 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2}[/tex]

Step-by-step explanation:

From the question we are told that

The equation for the paraboloid is [tex]z = x^2 + y^2[/tex]

The equation of the plane is [tex]8x - 5y + z -2 = 0[/tex]

Form the equation of the plane we have that

[tex]z = 5y -8x +2[/tex]

So

[tex] x^2 + y^2 = 5y -8x +2 [/tex]

=> [tex] x^2 + 8x + y^2 -5y = 2 [/tex]

Using completing the square method to evaluate the quadratic equation we have

[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = 2 +(\frac{5}{2} )^2 + 4^2[/tex]

[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = \frac{97}{4}[/tex]

[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = ( \frac{\sqrt{97} }{2} )^2[/tex]

representing the above equation in parametric form

[tex](x + 4) = \frac{\sqrt{97} }{2} cost[/tex] , [tex](y -\frac{5}{2} ) = \frac{\sqrt{97} }{2} sin t[/tex]

[tex]x = \frac{\sqrt{97} }{2} cost - 4[/tex]

[tex]y = \frac{\sqrt{97} }{2} sint + \frac{5}{2}[/tex]

So from [tex]z = 5y -8x +2[/tex]

[tex]z = 5[\frac{\sqrt{97} }{2} sint + \frac{5}{2}] -8[ \frac{\sqrt{97} }{2} cost - 4] +2[/tex]

[tex]z = 5\frac{\sqrt{97} }{2} sint + \frac{25}{2} -8 \frac{\sqrt{97} }{2} cost + 32 +2[/tex]

[tex]z = 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2}[/tex]

Generally the parametrization of the curve on the surface is mathematically represented as

[tex]c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ][/tex]

RELAXING NOICE
Relax