Respuesta :
Answer:
The parametrization of the curve on the surface is
[tex]c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ][/tex]
Where
[tex]x = \frac{\sqrt{97} }{2} cost - 4[/tex]
[tex]y = \frac{\sqrt{97} }{2} sint + \frac{5}{2}[/tex]
[tex]z = 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2}[/tex]
Step-by-step explanation:
From the question we are told that
The equation for the paraboloid is [tex]z = x^2 + y^2[/tex]
The equation of the plane is [tex]8x - 5y + z -2 = 0[/tex]
Form the equation of the plane we have that
[tex]z = 5y -8x +2[/tex]
So
[tex] x^2 + y^2 = 5y -8x +2 [/tex]
=> [tex] x^2 + 8x + y^2 -5y = 2 [/tex]
Using completing the square method to evaluate the quadratic equation we have
[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = 2 +(\frac{5}{2} )^2 + 4^2[/tex]
[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = \frac{97}{4}[/tex]
[tex](x + 4)^2 + (y - \frac{5}{2} )^2 = ( \frac{\sqrt{97} }{2} )^2[/tex]
representing the above equation in parametric form
[tex](x + 4) = \frac{\sqrt{97} }{2} cost[/tex] , [tex](y -\frac{5}{2} ) = \frac{\sqrt{97} }{2} sin t[/tex]
[tex]x = \frac{\sqrt{97} }{2} cost - 4[/tex]
[tex]y = \frac{\sqrt{97} }{2} sint + \frac{5}{2}[/tex]
So from [tex]z = 5y -8x +2[/tex]
[tex]z = 5[\frac{\sqrt{97} }{2} sint + \frac{5}{2}] -8[ \frac{\sqrt{97} }{2} cost - 4] +2[/tex]
[tex]z = 5\frac{\sqrt{97} }{2} sint + \frac{25}{2} -8 \frac{\sqrt{97} }{2} cost + 32 +2[/tex]
[tex]z = 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2}[/tex]
Generally the parametrization of the curve on the surface is mathematically represented as
[tex]c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ][/tex]
