Jake tosses a coin up in the air and lets it fall on the ground. The equation that

models the height (in feet) and time (in seconds) of the parabola is

h(t) = -16t2 + 24 + 6. Approximate the time at which the coin hits the

ground.

Respuesta :

Answer:

[tex]t = 1.71825[/tex]

Step-by-step explanation:

Given

[tex]h(t) = -16t^2 + 24t + 6[/tex]

Required

When will the coin hit the ground

When the coin hits the ground, [tex]h(t) = 0[/tex]

The expression [tex]h(t) = -16t^2 + 24t + 6[/tex] becomes

[tex]0 = -16t^2 + 24t + 6[/tex]

Multiply through by -1

[tex]16t^2 - 24t - 6 = 0[/tex]

Solve using quadratic formula

[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 16[/tex]

[tex]b = -24[/tex]

[tex]c = -6[/tex]

[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t = \frac{-(-24)\±\sqrt{(-24)^2 - 4 *16 * -6}}{2 * 16}[/tex]

[tex]t = \frac{24\±\sqrt{576 +384}}{32}[/tex]

[tex]t = \frac{24\±\sqrt{960}}{32}[/tex]

[tex]t = \frac{24\±30.984}{32}[/tex]

Split

[tex]t = \frac{24+30.984}{32}[/tex] or [tex]t = \frac{24-30.984}{32}[/tex]

[tex]t = \frac{54.984}{32}[/tex] or [tex]t = \frac{-6.984}{32}[/tex]

[tex]t = 1.71825[/tex] or [tex]t = -0.21825[/tex]

But time can't be negative;

So:

Time to hit the ground is 1.71825 seconds

RELAXING NOICE
Relax