Answer:
[tex]t = 1.71825[/tex]
Step-by-step explanation:
Given
[tex]h(t) = -16t^2 + 24t + 6[/tex]
Required
When will the coin hit the ground
When the coin hits the ground, [tex]h(t) = 0[/tex]
The expression [tex]h(t) = -16t^2 + 24t + 6[/tex] becomes
[tex]0 = -16t^2 + 24t + 6[/tex]
Multiply through by -1
[tex]16t^2 - 24t - 6 = 0[/tex]
Solve using quadratic formula
[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]
Where
[tex]a = 16[/tex]
[tex]b = -24[/tex]
[tex]c = -6[/tex]
[tex]t = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]t = \frac{-(-24)\±\sqrt{(-24)^2 - 4 *16 * -6}}{2 * 16}[/tex]
[tex]t = \frac{24\±\sqrt{576 +384}}{32}[/tex]
[tex]t = \frac{24\±\sqrt{960}}{32}[/tex]
[tex]t = \frac{24\±30.984}{32}[/tex]
Split
[tex]t = \frac{24+30.984}{32}[/tex] or [tex]t = \frac{24-30.984}{32}[/tex]
[tex]t = \frac{54.984}{32}[/tex] or [tex]t = \frac{-6.984}{32}[/tex]
[tex]t = 1.71825[/tex] or [tex]t = -0.21825[/tex]
But time can't be negative;
So:
Time to hit the ground is 1.71825 seconds