Answer:
12.4 cm³
Step-by-step explanation:
From the picture attached,
Radius of the circular top of the cone = [tex]\frac{\text{Diameter}}{2}[/tex] = [tex]\frac{2}{2}=1[/tex]
Height of the cone = h
Lateral height of the cone = h
By applying Pythagoras theorem in the right triangle of the cone,
l² = r² + h²
6² = 1² + h²
h = [tex]\sqrt{36-1}[/tex]
h = [tex]\sqrt{35}[/tex]
Ice cream needed to fill one cone = Volume of the cone
Since, formula for the volume of the cone V = [tex]\frac{1}{3} \pi r^{2} h[/tex]
V = [tex]\frac{1}{3}\pi (1)^2(\sqrt{35})[/tex]
= 6.195
≈ 6.20 cm³
Ice cream needed to fill the two cones = 2 × 6.20
= 12.4 cm³
Therefore, ice cream needed to fill the two cone = 12.4 cm³