Consider right triangle ABC below. Which expressions represent the length of side bc

Answer:
It's B and C
Step-by-step explanation:
I have this same question on Khan Academy, and it is B. 6⋅sin(35°) and C. 6⋅cos(55°)
The solution to the problem can be solved using trigonometric functions.
[tex]\rm{Sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]Cos \theta=\dfrac{Base}{Hypotenuse}[/tex]
[tex]Tan \theta=\dfrac{Perpendicular}{Base}[/tex]
where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
The value of BC = 6 Cos(55°) = 6 Sin(35°).
Cosine Function
[tex]\rm{ Cos(\angle C) = \dfrac{Base}{Hypotenuse}[/tex]
[tex]\rm{ Cos(55^o) = \dfrac{BC}{AC}[/tex]
[tex]\rm{ Cos(55^o) = \dfrac{BC}{6}[/tex]
[tex]{BC}={6}\ Cos(55^o)[/tex]
Sine Function
[tex]\rm{ Sin(\angle A) = \dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]\rm{ Sin(35^o) = \dfrac{BC}{AC}[/tex]
[tex]\rm{ Sin(35^o) = \dfrac{BC}{6}[/tex]
[tex]{BC}={6}\ Sin(35^o)[/tex]
Hence, the value of BC = 6 Cos(55°) = 6 Sin(35°).
Learn more about trigonometric functions:
https://brainly.com/question/6904750