Respuesta :

Answer:

It's B and C

Step-by-step explanation:

I have this same question on Khan Academy, and it is B. 6⋅sin(35°) and C. 6⋅cos(55°)

The solution to the problem can be solved using trigonometric functions.

Trigonometric functions

[tex]\rm{Sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]Cos \theta=\dfrac{Base}{Hypotenuse}[/tex]

[tex]Tan \theta=\dfrac{Perpendicular}{Base}[/tex]

where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.

The value of BC = 6 Cos(55°) =  6 Sin(35°).

Given to us

  • AC = 6 units
  • ∠A = 35°
  • ∠B = 90°
  • ∠C = 55°

Solution

1.  For ∠C

Cosine Function

[tex]\rm{ Cos(\angle C) = \dfrac{Base}{Hypotenuse}[/tex]

[tex]\rm{ Cos(55^o) = \dfrac{BC}{AC}[/tex]

[tex]\rm{ Cos(55^o) = \dfrac{BC}{6}[/tex]

[tex]{BC}={6}\ Cos(55^o)[/tex]

2.  For ∠A

Sine Function

[tex]\rm{ Sin(\angle A) = \dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\rm{ Sin(35^o) = \dfrac{BC}{AC}[/tex]

[tex]\rm{ Sin(35^o) = \dfrac{BC}{6}[/tex]

[tex]{BC}={6}\ Sin(35^o)[/tex]

Hence, the value of BC = 6 Cos(55°) =  6 Sin(35°).

Learn more about trigonometric functions:

https://brainly.com/question/6904750

Ver imagen ap8997154
RELAXING NOICE
Relax