Given:
The function is
[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]
To find:
The ordered pair(s) from the options lie on the function.
Solution:
We have,
[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]
For x=1,
[tex]f(1)=\left(\dfrac{1}{4}\right)^1[/tex]
[tex]f(1)=\dfrac{1}{4}\neq 4[/tex]
So, the point (1,4) does not lies on the function f(x).
For x=-1,
[tex]f(-1)=\left(\dfrac{1}{4}\right)^{-1}[/tex]
[tex]f(-1)=4[/tex]
So, the point (-1,4) lies on the function f(x).
For x=3,
[tex]f(3)=\left(\dfrac{1}{4}\right)^{3}[/tex]
[tex]f(3)=\dfrac{1}{64}[/tex]
So, the point [tex]\left(3,\dfrac{1}{64}\right)[/tex] lies on the function f(x).
For x=0,
[tex]f(0)=\left(\dfrac{1}{4}\right)^0[/tex]
[tex]f(0)=1[/tex]
So, the point [tex]\left(0,\dfrac{1}{4}\right)[/tex] does not lies on the function f(x).
Therefore, the correct options are B and C.