Respuesta :

Given:

The function is

[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]

To find:

The ordered pair(s) from the options lie on the function.

Solution:

We have,

[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]

For x=1,

[tex]f(1)=\left(\dfrac{1}{4}\right)^1[/tex]

[tex]f(1)=\dfrac{1}{4}\neq 4[/tex]

So, the point (1,4) does not lies on the function f(x).

For x=-1,

[tex]f(-1)=\left(\dfrac{1}{4}\right)^{-1}[/tex]

[tex]f(-1)=4[/tex]

So, the point (-1,4) lies on the function f(x).

For x=3,

[tex]f(3)=\left(\dfrac{1}{4}\right)^{3}[/tex]

[tex]f(3)=\dfrac{1}{64}[/tex]

So, the point [tex]\left(3,\dfrac{1}{64}\right)[/tex] lies on the function f(x).

For x=0,

[tex]f(0)=\left(\dfrac{1}{4}\right)^0[/tex]

[tex]f(0)=1[/tex]

So, the point [tex]\left(0,\dfrac{1}{4}\right)[/tex] does not lies on the function f(x).

Therefore, the correct options are B and C.

RELAXING NOICE
Relax