Respuesta :
Answer:
(x-2),(2x+3), and (2x-1)
Step-by-step explanation:
I just took the test and guessed but now I know the answer, so I'm helping everyone :)
One of the ways of getting the factors of a polynomial is by factorization.
The linear factors of [tex]\mathbf{f(x) = 4x^3 - 4x^2 - 11x + 6}[/tex] are [tex]\mathbf{(2x -1),\ (2x + 3) \ and\ (x - 2)}[/tex]
The function is given as:
[tex]\mathbf{f(x) = 4x^3 - 4x^2 - 11x + 6}[/tex]
Expand
[tex]\mathbf{f(x) = 4x^3 - 2x^2 - 2x^2 - 12x + x + 6}[/tex]
Rewrite as:
[tex]\mathbf{f(x) = 4x^3 -2x^2 -12x - 2x^2 + x + 6}[/tex]
Factorize
[tex]\mathbf{f(x) = 2x(2x^2 - x - 6)-1(2x^2 - x - 6)}[/tex]
Factor out [tex]\mathbf{(2x^2 - x - 6)}[/tex]
[tex]\mathbf{f(x) = (2x -1)(2x^2 - x - 6)}[/tex]
Expand
[tex]\mathbf{f(x) = (2x -1)(2x^2 -4x + 3x - 6)}[/tex]
Factorize
[tex]\mathbf{f(x) = (2x -1)(2x(x -2) + 3(x - 2)}[/tex]
Factor out x -2
[tex]\mathbf{f(x) = (2x -1)(2x + 3) (x - 2)}[/tex]
Hence, the linear factors are: [tex]\mathbf{(2x -1),\ (2x + 3) \ and\ (x - 2)}[/tex]
Read more about linear factors at:
https://brainly.com/question/2510777
