Respuesta :

Answer:

(x-2),(2x+3), and (2x-1)

Step-by-step explanation:

I just took the test and guessed but now I know the answer, so I'm helping everyone :)

One of the ways of getting the factors of a polynomial is by factorization.

The linear factors of [tex]\mathbf{f(x) = 4x^3 - 4x^2 - 11x + 6}[/tex] are [tex]\mathbf{(2x -1),\ (2x + 3) \ and\ (x - 2)}[/tex]

The function is given as:

[tex]\mathbf{f(x) = 4x^3 - 4x^2 - 11x + 6}[/tex]

Expand

[tex]\mathbf{f(x) = 4x^3 - 2x^2 - 2x^2 - 12x + x + 6}[/tex]

Rewrite as:

[tex]\mathbf{f(x) = 4x^3 -2x^2 -12x - 2x^2 + x + 6}[/tex]

Factorize

[tex]\mathbf{f(x) = 2x(2x^2 - x - 6)-1(2x^2 - x - 6)}[/tex]

Factor out [tex]\mathbf{(2x^2 - x - 6)}[/tex]

[tex]\mathbf{f(x) = (2x -1)(2x^2 - x - 6)}[/tex]

Expand

[tex]\mathbf{f(x) = (2x -1)(2x^2 -4x + 3x - 6)}[/tex]

Factorize

[tex]\mathbf{f(x) = (2x -1)(2x(x -2) + 3(x - 2)}[/tex]

Factor out x -2

[tex]\mathbf{f(x) = (2x -1)(2x + 3) (x - 2)}[/tex]

Hence, the linear factors are: [tex]\mathbf{(2x -1),\ (2x + 3) \ and\ (x - 2)}[/tex]

Read more about linear factors at:

https://brainly.com/question/2510777

RELAXING NOICE
Relax