Respuesta :

Answer:

Area of parallelogram = 432 [tex]cm^2[/tex].

Length of [tex]\overline{AC}[/tex]= 48 cm.

Step-by-step explanation:

In the given figure I ABCD is a parallelogram

Base of parallelogram ABCD= AB=18 cm

Length of side BC= 30 cm

We know that

area of parallelogram= [tex]base\times height[/tex]

Pythogorous theorem :

[tex](perpendicular\; side)^2+ (Base)^2= ( hypotenuse)^2[/tex]

[tex](BC)^2= (AB)^2+ (AC)^2[/tex]

[tex](30)^2=(18)^2+ (AC)^2[/tex]

900=324+[tex](AC)^2[/tex]

[tex](AC)^2[/tex]=900-324=576

AC=[tex]\sqrt{576}[/tex]=24 cm

Length of side AC=24 cm

Area of parallelogram = [tex]18\times 24[/tex]=432 [tex]cm^2[/tex].

In II figure

AD=26 cm

DB=10 cm

AB=BC ( given)

By using pythogorous theorem

In triangle ABD

[tex](AD)^2= (BD)^2+ (AB)^2[/tex]

[tex](26)^2= (10)^2+ (AB)^2[/tex]

676=100 +[tex](AB)^2[/tex]

[tex](AB)^2[/tex]= 676-100=576

AB=[tex]\sqrt{576}[/tex]

AB=24 cm

AC= [tex]2\times AB[/tex]

AC= [tex]2\times 24[/tex]

AC=48 cm .