Answer:
[tex]\mathbf{N_A = 1.71 \times 10^{-6} \ kmol/m^2.s}[/tex]
Explanation:
From the given information:
The total length = 0.20 m
Diameter = 0.01 m
Temperature = 298 K
Pressure = 101.32 kPa
The partial pressure of CO2 i.e [tex]p_{A1}[/tex] is 456 mm Hg at one end
To kPa, we have:
= [tex]456 \times \dfrac{101.325}{760}[/tex]
= 60.795 kPa
The partial pressure of CO2 i.e. [tex]p_{A2}[/tex] at the other end is 76 mm Hg
To kPa; we have
= [tex]75 \times \dfrac{101.325}{760}[/tex]
= 9.999 kPa
[tex]\simeq[/tex] 10 kPa
The diffusion coefficient of CO[tex]_2[/tex] in N[tex]_2[/tex] is 1.67 × 10⁻⁵
Universal gas constant = 8.314 J/mol/k
For equimolar counter-diffusion between the CO2 and N2 gases, the molar flux of CO[tex]_2[/tex] can be estimated by using the formula:
[tex]N_A = \dfrac{D_{AB}}{RT}(p_{A1} - p_{A2})[/tex]
replacing our values from the above parameters then:
[tex]N_A = \dfrac{1.67 \times 10^{-5}}{8.314 \times 298 \times 0.2}(60.795 - 10)[/tex]
[tex]\mathbf{N_A = 1.71 \times 10^{-6} \ kmol/m^2.s}[/tex]