Answer:
Explanation:
Given information:
A designed dialysis unit consists of a large no of small hollow fibers,
Considering the one fiber,
By using the volume of blood, we have :
[tex]V =\dfrac{\pi}{4}\times D^2 \times L[/tex]
where:
L = 30cm = (30× 10) mm = 300 mm
Volume = 80 ml = 80 × 10³ mm
From the above equation, making D the subject, we have:
[tex]4 V ={\pi}\times D^2 \times L[/tex]
[tex]D^2 =\dfrac{4 V }{{\pi}\times L}[/tex]
[tex]D^2 =\dfrac{4 \times 80 \times 10^3 }{ \pi \times 300}[/tex]
D² = 339.53
[tex]D = \sqrt{339.53}[/tex]
D = 18.43 mm
D = 1.843 cm
However, suppose we consider the laminar flow, the pressure loss in a single fiber can be determined as follows:
[tex]\Delta p = \rho g h_f= \dfrac{32* \mu *\overline u*l }{D^2}[/tex]
where;
[tex]\overline u = \dfrac{4 \times 50 \times 10^3}{\pi \times (18.43)^2}[/tex]
[tex]\overline u = \dfrac{200000}{1067.088755}[/tex]
[tex]\overline u =187.43 \ mm/sec[/tex]
[tex]\overline u =18.743 \ cm/sec[/tex]
Recall:
[tex]\Delta p = \dfrac{32* \mu *\overline u*l }{D^2}[/tex]
[tex]\Delta p = \dfrac{32* 3.5 \times 10^{-2} *18.743*30 }{1.843^2}[/tex]
[tex]\Delta p = \dfrac{629.7648 }{3.396649}[/tex]
[tex]\Delta p =185.41 \ dyne/cm^2[/tex]
Finally, the number of needed to be used = [tex]\dfrac{p}{\Delta p}[/tex]
= [tex]\dfrac{10^5 \ dyne /cm^2}{185.41\ dyne /cm^2}[/tex]
= 539.35