Given:
The inequality is [tex]y \leq |3x - 6| + 2[/tex].
Alisha solved the given inequality and got
[tex]y \leq 3x -4[/tex] for [tex]x \geq 2[/tex] and [tex]y \leq -3x - 4[/tex] for [tex]x < 2[/tex].
To find:
The Alisha's error, and the correct answer.
Solution:
We have,
[tex]y\leq |3x-6|+2[/tex]
For [tex]x \geq 2, |3x-6|=3x-6[/tex]. So,
[tex]y\leq 3x-6+2[/tex]
[tex]y\leq 3x-4[/tex]
For [tex]x < 2, |3x-6|=-(3x-6)[/tex]. So,
[tex]y\leq -(3x-6)+2[/tex]
[tex]y\leq -3x+6+2[/tex]
[tex]y\leq -3x+8[/tex]
Alisha's second inequality is wrong because she did not distribute the negative with 6.
Therefore, the correct answer is
[tex]y \leq 3x -4[/tex] for [tex]x \geq 2[/tex] and [tex]y \leq -3x +8[/tex] for [tex]x < 2[/tex].