contestada

Alisha solved the inequality y ≤ |3x − 6| + 2 and got y ≤ 3x − 4 for x ≥ 2 and y ≤ −3x − 4 for x < 2. Explain Alisha's error, and show the correct answer.

Respuesta :

Given:

The inequality is [tex]y \leq |3x - 6| + 2[/tex].

Alisha solved the given inequality and got

[tex]y \leq 3x -4[/tex] for [tex]x \geq 2[/tex] and [tex]y \leq -3x - 4[/tex] for [tex]x < 2[/tex].

To find:

The Alisha's error, and  the correct answer.

Solution:

We have,

[tex]y\leq |3x-6|+2[/tex]

For [tex]x \geq 2, |3x-6|=3x-6[/tex]. So,

[tex]y\leq 3x-6+2[/tex]

[tex]y\leq 3x-4[/tex]

For [tex]x < 2, |3x-6|=-(3x-6)[/tex]. So,

[tex]y\leq -(3x-6)+2[/tex]

[tex]y\leq -3x+6+2[/tex]

[tex]y\leq -3x+8[/tex]

Alisha's second inequality is wrong because she did not distribute the negative with 6.

Therefore, the correct answer is

[tex]y \leq 3x -4[/tex] for [tex]x \geq 2[/tex] and [tex]y \leq -3x +8[/tex] for [tex]x < 2[/tex].

ACCESS MORE
EDU ACCESS