Points P, Q, and S are collinear. If ray QT bisects angle RQS, what is m angle TQS?

Answer:
The angle TQS has a value of 23.5º.
Step-by-step explanation:
[tex]\angle RQS[/tex] and [tex]\angle PQR[/tex] are supplementary to each other, that is, the sum of angles equals 180º, and ray [tex]QT[/tex] divides [tex]\angle RQS[/tex] into two equal parts. We construct this system of linear equations after a careful reading of statement:
[tex]\angle RQS = (x+1)^{\circ}[/tex] (Eq. 1)
[tex]\angle PQR = (3\cdot x - 5)^{\circ}[/tex] (Eq. 2)
[tex]\angle RQS + \angle PQR = 180^{\circ}[/tex] (Eq. 3)
[tex]\angle RQS = \angle RQT + \angle TQS[/tex] (Eq. 4)
[tex]\angle RQT = \angle TQS[/tex] (Eq. 5)
Now we proceed to solve the system algebraically:
(Eq. 1) and (Eq. 2) in (Eq. 3)
[tex](x+1)^{\circ} + (3\cdot x - 5)^{\circ} = 180^{\circ}[/tex]
[tex](4\cdot x-4)^{\circ} = 180^{\circ}[/tex]
[tex](4\cdot x)^{\circ} = 184^{\circ}[/tex]
[tex]x = \frac{184}{4}[/tex]
[tex]x = 46[/tex]
In (Eq. 1):
[tex]\angle RQS = 47^{\circ}[/tex]
(Eq. 5) in (Eq. 4):
[tex]\angle RQS = 2\cdot \angle TQS[/tex]
[tex]\angle TQS = \frac{1}{2}\cdot \angle RQS[/tex]
[tex]\angle TQS = \frac{1}{2}\cdot (47^{\circ})[/tex]
[tex]\angle TQS = 23.5^{\circ}[/tex]
The angle TQS has a value of 23.5º.