PLS HELP ASAP IT DUE IN ^ MINUTES PLEASEEEEEEE

Answer:
[tex](x+1)^2(x-3)[/tex]
Step-by-step explanation:
Use the rational root theorem
Hi There!!
It's a factor, So the answer yes.
Step-by-step explanation:
Because, Factor [tex]x^3 - x^2 - 5x - 3[/tex] using the rational roots test.
If a polynomial function has integer coefficients, then every rational zero will have the form [tex]\frac{p}{q}[/tex] where p is a factor of the constant and q is a factor of the leading.
Coefficient
[tex]p =[/tex] ±[tex]1,[/tex] ±[tex]3[/tex]
[tex]q = +1[/tex]
Find every combination of [tex]+\frac{p}{q}[/tex] . These are the possible roots of the polynomial function.
Substitute [tex]-1[/tex] and simplify the expression. In this case, the expression is equal to [tex]0[/tex] so [tex]-1[/tex] is a root of the polynomial.
Since [tex]-1[/tex] is a known root, divide the polynomial by [tex]x - 1[/tex] to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
[tex]x^3 - x^2 - 5x - by[/tex] [tex]x + 1.[/tex]
--------------------------------
[tex]x + 1[/tex]
Divide [tex]x^3 - x^2 - 5x - 3[/tex] by [tex]x + 1[/tex].
[tex]x^2 - 2x - 3[/tex]
Write [tex]x^3 - x^2 - 5x - 3[/tex] as a set of factors.
[tex](x + 1) (x^2 -2x - 3)[/tex]
Factor [tex]x^2 - 2x - 3[/tex] using the AC method.
[tex](x + 1) (x- 3) ( x+ 1)[/tex]
Remove unnecessary parentheses.
[tex](x + 1) (x- 3) ( x+ 1)[/tex]
So, Your best answer is [tex](x + 1) (x- 3) ( x+ 1)[/tex]
[tex]GoodLuck!![/tex]
#[tex]Be[/tex] [tex]Bold[/tex]
# [tex]Always[/tex] [tex]Brainly![/tex]
[tex]_{Loserbrazts}[/tex]
(╹ڡ╹ )