Respuesta :
[tex]44g \ CO_{2} \ \ \ \ \rightarrow \ \ \ 12g \ C\\
12,5g \ CO_{2} \ \ \rightarrow \ \ \ x\\\\
x=\frac{12,5g*12g}{44g}=3,41g \ \ \ \Rightarrow \ \ \ n=\frac{3,41g}{12\frac{g}{mol}}=0,28mol\\\\\\
18g \ H_{2}O \ \ \ \ \ \ \rightarrow \ \ \ 2g \ \ H\\
4,28g \ H_{2}O \ \ \ \rightarrow \ \ \ x\\\\
x=\frac{4,28g*2g}{18g}=0,48g \ \ \ \Rightarrow \ \ \ n=\frac{0,48g}{1\frac{g}{mol}}=0,48mol\\\\\\\\
n_{c}:n_{x}=0,28:0,48\approx1:2\\\\\\
empirical \ formula: \ CH_{2}[/tex]
Answer:
Empirical formula of the hydrocarbon is [tex]C_1H_2[/tex].
Explanation:
Mass of carbon dioxide produced = 12.5 g
Moles of carbon dioxide = [tex]\frac{12.5 g}{44 g/mol}=0.2841 mol[/tex]
Moles of carbon atom in 0.2841 moles of carbon dioxide:
1 × 0.2841 mol = 0.2841 mol
Mass of water produced = 4.28 g
Moles of water = [tex]\frac{4.28 g}{18 g/mol}= 0.2378 mol[/tex]
Moles of hydrogen in water = 2 × 0.2378 mol = 0.4756 mol
For empirical formula divide the moles of element which are is less amount with all the moles of every element.
Carbon = [tex]\frac{0.2841 mol}{0.2841 mol}=1[/tex]
Hydrogen = [tex]\frac{0.4756 mol}{0.2841 mol}=1.67\approx 2[/tex]
Empirical formula of the hydrocarbon is [tex]C_1H_2[/tex].