Line segment JK has endpoints with coordinates (-4,11) and (8,-1). J,P, and K are collinear on segment JK, and JP: JK = 1/3. What are the coordinates of P?

Respuesta :

Answer:

[tex]P(x,y) = (0,7)[/tex]

Step-by-step explanation:

Given

[tex]J = (-4,11)[/tex]

[tex]K = (8,-1)[/tex]

[tex]JP:JK = 1/3[/tex]

Required

Determine the coordinates of P

[tex]JP:JK = 1/3[/tex]

Represent as ratio

[tex]JP:JK = 1:3[/tex]

Next, is to determine [tex]JP:PK[/tex]

[tex]PK = JK - JP[/tex]

So,

[tex]JP : PK = 1 : 3 -1[/tex]

[tex]JP : PK = 1 : 2[/tex]

The coordinates of P can be calculated using:

[tex]P(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

In this case:

[tex](x_1,y_1) = (-4,11)[/tex]

[tex](x_2,y_2) = (8,-1)[/tex]

[tex]m:n = 1:2[/tex]

So:

[tex]P(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

[tex]P(x,y) = (\frac{1 * 8 + 2 * -4}{1 + 2},\frac{1 * -1 + 2 * 11}{1 + 2})[/tex]

[tex]P(x,y) = (\frac{0}{3},\frac{21}{3})[/tex]

[tex]P(x,y) = (0,7)[/tex]

Hence, the coordinates of P: [tex]P(x,y) = (0,7)[/tex]