Respuesta :
Answer:
k = - 11, 5
Step-by-step explanation:
By distance formula:
[tex] \sqrt{ \{ {k - ( - 3) \}}^{2} + \{5 - ( - 1) \}^{2} } = 10 \\ \\ \sqrt{ {(k + 3)}^{2} + {(5 + 1)}^{2} } = 10 \\ \\ \sqrt{ {(k + 3)}^{2} + {(6)}^{2} } = 10 \\ \\ \sqrt{ {(k + 3)}^{2} + 36 } = 10 \\ \\ (k + 3)^{2} + 36 = {10}^{2} \\ ..(squaring \: both \: sides) \\ {k}^{2} + 6k + 9 + 36 = 100 \\ {k}^{2} + 6k + 45 - 100 = 0 \\ {k}^{2} + 6k - 55 = 0 \\ {k}^{2} + 11k - 5k - 55 = 0 \\ k(k + 11) - 5(k + 11) = 0 \\ (k + 11)(k - 5) = 0 \\ k + 11 = 0 \: or \: k - 5 = 0 \\ k = - 11 \: or \: k = 5 \\ \\ \huge \red { \boxed{k = \{ - 11, \: 5\}}}[/tex]
There are two solutions for [tex]k[/tex]: 5 and -11.
In this case, we must use the Length Equation for Line Segment to solve for [tex]k[/tex], whose formula is described below:
[tex]l = \sqrt{(x_{B}-x_{A})^{2}+ (y_{B}-y_{A})^{2}}[/tex] (1)
Where:
[tex](x_{A}, y_{A})[/tex] - Coordinates of the initial endpoint.
[tex](x_{B}, y_{B})[/tex] - Coordinates of the final endpoint.
[tex]l[/tex] - Length of the line segment.
If we know that [tex](x_{A}, y_{A}) = (-3, -1)[/tex], [tex](x_{B}, y_{B}) = (k, 5)[/tex] and [tex]l = 10[/tex], then the equation is expanded into this form:
[tex](k+3)^{2}+[5-(-1)]^{2} = 100[/tex]
[tex]k^{2}+6\cdot k + 9 + 36 = 100[/tex]
[tex]k^{2} + 6\cdot k -55 = 0[/tex]
The roots of this Second Order Polynomial are determined by Quadratic Formula:
[tex]k = 5[/tex] or [tex]k = -11[/tex].
There are two solutions for [tex]k[/tex]: 5 and -11.
Please see this related question: https://brainly.com/question/15887719