Respuesta :

Answer:

[tex]P(x,y) = (7,6)[/tex]

Step-by-step explanation:

Given

[tex]X = (1,-6)[/tex]

[tex]Y = (9,10)[/tex]

[tex]Point = \frac{3}{4}[/tex]

Required

Determine the coordinate of the point;

First, we need to determine the ratio of the point between X and Y

Represent the point with P

If the distance between point X and point P is [tex]\frac{3}{4}[/tex],

The distance between point P and point Y will be [tex]1 - \frac{3}{4} = \frac{1}{4}[/tex]

[tex]Ratio = XP : PY[/tex]

[tex]Ratio = \frac{3}{4} : \frac{1}{4}[/tex]

Multiply through by 4

[tex]Ratio = 3: 1[/tex]

Now, the coordinate of P can be calculated using

[tex]P(x,y) = (\frac{mx_2 + nx_1}{n+m},\frac{my_2 + ny_1}{n+m})[/tex]

Where

[tex]m:n = 3:1[/tex]

[tex](x_1,y_1) = (1,-6)[/tex]

[tex](x_2,y_2) = (9,10)[/tex]

Substitute these values in the formula above

[tex]P(x,y) = (\frac{3 * 9 + 1 * 1}{3+1},\frac{3 * 10 + 1 * -6}{3+1})[/tex]

[tex]P(x,y) = (\frac{27 + 1}{4},\frac{30 -6}{4})[/tex]

[tex]P(x,y) = (\frac{28}{4},\frac{24}{4})[/tex]

[tex]P(x,y) = (7,6)[/tex]

ACCESS MORE