Answer:
[tex]2\sqrt{3}+3\sqrt{2}-\sqrt{10}-\sqrt{15}[/tex]
Step-by-step explanation:
[tex]$\frac{\sqrt{2} +\sqrt{3}} {\sqrt{5} +\sqrt{6}} $[/tex]
In order to rationalize it, we multiply the denominator by its conjugate
This way we have a difference of squares
[tex]\boxed{(a+b)(a-b) = a^2-b^2}[/tex]
[tex]$\frac{\sqrt{2} +\sqrt{3}} {\sqrt{5} +\sqrt{6}} \cdot \frac{\sqrt{5} -\sqrt{6}} {\sqrt{5} -\sqrt{6}} = \frac{(\sqrt{2} +\sqrt{3})(\sqrt{5} -\sqrt{6})}{5-6} $[/tex]
[tex]$\frac{(\sqrt{2} +\sqrt{3})(\sqrt{5} -\sqrt{6})}{5-6}=\frac{\left(\sqrt{10}-2\sqrt{3}+\sqrt{15}-3\sqrt{2}\right)}{-1} $[/tex]
[tex]-(\sqrt{10}-2\sqrt{3}+\sqrt{15}-3\sqrt{2}) = 2\sqrt{3}+3\sqrt{2}-\sqrt{10}-\sqrt{15}[/tex]