Respuesta :

Answer:

If this solution is under standard conditions, then it will be possible to explain the products of this electrolysis ([tex]\rm Cu \, (s)[/tex], [tex]\rm O_2\, (g)[/tex], [tex]\rm H^{+}\; (aq)[/tex]) with reference to the standard reduction potentials.

Explanation:

Assume that this solution is under standard conditions, including:

  • A concentration of [tex]1.00\; \rm mol \cdot L^{-1}[/tex],
  • A pressure of [tex]10^5\; \rm Pa[/tex], and
  • A temperature of [tex]25\; \rm ^\circ C[/tex].

This [tex]\rm CuSO_4[/tex] solution (in water) would include the following species:

  • [tex]\rm Cu^{2+}[/tex] ions,
  • [tex]\rm {SO_4}^{2-}[/tex] ions, and
  • [tex]\rm H_2O[/tex] molecules.

(The carbon electrode is relatively inert and typically won't take part in the chemical reaction.)

Consider the electrolysis of this solution as the sum of the reduction half-reaction and the oxidation half-reaction. Look up the standard reduction potential for half-reactions involving these species:

[tex]\rm {\bf Cu^{2+} \; (aq)} + e^{-} \rightleftharpoons Cu^{-}\; \rm (aq)[/tex]. Standard reduction potential: [tex]E^\circ = 0.159\; \rm V[/tex].

[tex]\rm {\bf Cu^{2+} \; (aq)} + 2\; e^{-} \rightleftharpoons Cu\; \rm (s)[/tex]. Standard reduction potential: [tex]E^\circ = 0.3419\; \rm V[/tex].

[tex]\rm {\bf {SO_4}^{2-}} + {\bf H_2O\; (l)} + 2\; e^{-} \rightleftharpoons {SO_3}^{2-} + 2\; OH^{-}[/tex]. Standard reduction potential: [tex]E^\circ = -0.936\; \rm V[/tex].

[tex]\rm 2\; {\bf H_2O\, (l)} + 2\; e^{-} \rightleftharpoons H_2\, (g) + 2\; OH^{-}\, (aq)[/tex]. Standard reduction potential: [tex]E^{\circ} = -0.828\; \rm V[/tex].

[tex]\rm O_2 \, (g) + 4\; H^{+}\, (aq) + 4\; e^{-} \rightleftharpoons 2\; {\bf H_2O\, (l)}[/tex]. Standard reduction potential: [tex]E^{\circ} = 1.229\; \rm V[/tex].

(Species found in this solution are shown in bold typeface.)

Reduction Half-reaction

Note, that in the first four reactions, species from this solution are all on the same side as [tex]\rm e^{-}[/tex]. In other words, in those four reactions, these species would gain electrons and are reduced. These reactions are thus plausible reduction half-reactions. The standard electrode potential of each half reaction will be the same as the standard reduction potential. Because reduction takes place at the cathode, these potentials are denoted as [tex]E^\circ(\text{cathode})[/tex].

[tex]\rm {\bf Cu^{2+} \; (aq)} + e^{-} \rightleftharpoons Cu^{-}\; \rm (aq)[/tex]. [tex]E^\circ(\text{cathode}) = 0.159\; \rm V[/tex].

[tex]\rm {\bf Cu^{2+} \; (aq)} + 2\; e^{-} \rightleftharpoons Cu\; \rm (s)[/tex]. [tex]E^\circ(\text{cathode}) = 0.3419\; \rm V[/tex].

[tex]\rm {\bf {SO_4}^{2-}} + {\bf H_2O\; (l)} + 2\; e^{-} \rightleftharpoons {SO_3}^{2-} + 2\; OH^{-}[/tex]. [tex]E^\circ(\text{cathode}) = -0.936\; \rm V[/tex].

[tex]\rm 2\; {\bf H_2O\, (l)} + 2\; e^{-} \rightleftharpoons H_2\, (g) + 2\; OH^{-}\, (aq)[/tex]. [tex]E^{\circ}(\text{cathode}) = -0.828\; \rm V[/tex].

The only reduction half-reaction that will take place will be the one with the most positive (least negative) electrode potential. Among these four plausible half-reaction, that reaction would be the reduction of [tex]\rm Cu^{2+}\; (aq)[/tex] to [tex]\rm Cu\, (s)[/tex] (elemental copper,) [tex]\rm {\bf Cu^{2+} \; (aq)} + 2\; e^{-} \rightleftharpoons Cu\; \rm (s)[/tex], with an electrode potential of [tex]0.3419\; \rm V[/tex]. That explains why metallic copper will deposit on the cathode.

Oxidation Half-reaction

On the other hand, the reaction [tex]\rm 2\; {\bf H_2O\, (l)} \rightleftharpoons O_2 \, (g) + 4\; H^{+}\, (aq) + 4\; e^{-}[/tex] seems to be the only one that involves species from this solution on the opposite side of [tex]\rm e^{-}[/tex]. The actual reaction would take place in the other direction:

[tex]\rm 2\; {\bf H_2O\, (l)} \rightleftharpoons O_2 \, (g) + 4\; H^{+}\, (aq) + 4\; e^{-}[/tex].

The corresponding electrode potential will be the opposite of the standard reduction potential. Because this reaction corresponds to oxidation, it will happen at the anode.

[tex]E^\circ(\text{anode}) = -E^{\circ} = -1.229\; \rm V[/tex].

That explains why [tex]\rm O_2\, (g)[/tex] will be produced at the anode.

Overall Reaction

Multiply coefficients in the reduction half-reaction by two and combine the two half-reactions. Make sure that electrons are eliminated from both sides of this equation:

[tex]\rm 2\; Cu^{2+}\, (aq) + 2\; H_2O\, (l) \to 2\; Cu\, (s) + O_2\, (g) + 4\; H^{+}\, (aq)[/tex].

[tex]\rm {SO_4}^{2-}\, (aq)[/tex] would be the spectator ion. Add that to the reaction to obtain the chemical equation of this electrolysis:

[tex]\rm 2\; CuSO_4\, (aq) + 2\; H_2O\, (l) \rightleftharpoons 2\; Cu\, (s) + O_2\, (g) + 2\; H_2SO_4[/tex].

ACCESS MORE