Answer:
[tex](-4,-5 )[/tex]
Step-by-step explanation:
You are looking for the point of intersection of these two functions.
Substitution:
- This are now your formulas
[tex]\left \{ {{x=-4y-24} \atop {5x+3y=-35}} \right.[/tex]
- You are going to substitute x, so you can solve for y
- [tex]5(-4y-24)+3y=-35[/tex]
- [tex]-20y-120+3y=-35[/tex]
- [tex]-17y=85[/tex]
- [tex]y=-5[/tex]
- Now you are going to substitute y to find x
- [tex]x=-4(-5)-24[/tex]
- [tex]x=20-24[/tex]
- [tex]x=-4[/tex]
- Now lets check if it is correct
- [tex]-4+4(-5)=-24 :)[/tex]
- [tex]5(-4)+3(-5)=-35 :)[/tex]
So it is true, making (-4 , -5) your point of intersection.
hope it helps