Respuesta :
Answer:
[tex]Speed = \frac{8v}{5}[/tex]
Explanation:
Given
[tex]Speeds: v\ and\ 2v[/tex]
Required
Determine the average speed
First, we need to determine the time spent on the journey
[tex]Time = Distance/Speed[/tex]
For the first [tex]\frac{1}{4}th[/tex]
[tex]T_1 = \frac{1}{4}/v[/tex]
[tex]T_1 =\frac{1}{4v}[/tex]
For the next [tex]\frac{3}{4}th[/tex]
[tex]T_2 = \frac{3}{4}/2v[/tex]
[tex]T_2 = \frac{3}{8v}[/tex]
[tex]Total\ Time = T_1 +T_2[/tex]
[tex]T = \frac{1}{4v} + \frac{3}{8v}[/tex]
[tex]T = \frac{2+3}{8v}[/tex]
[tex]T = \frac{5}{8v}[/tex]
Average Speed is then calculated as thus:
[tex]Speed = Distance/Time[/tex]
[tex]Speed = (\frac{1}{4} + \frac{3}{4})/\frac{5}{8v}[/tex]
[tex]Speed = (\frac{1+3}{4})/\frac{5}{8v}[/tex]
[tex]Speed = (\frac{4}{4})/\frac{5}{8v}[/tex]
[tex]Speed = 1/\frac{5}{8v}[/tex]
[tex]Speed = 1 * \frac{8v}{5}[/tex]
[tex]Speed = \frac{8v}{5}[/tex]
Hence;
Option 1 answers the question
Answer: 1. [tex]\frac{8v}{5}[/tex]
Explanation: Speed is a variable in Physics defined by the rate at which an object go through a distance. It can be calculated as:
[tex]speed=\frac{distance}{time}[/tex]
A fourth of distance with speed v takes:
[tex]speed=\frac{distance}{time}[/tex]
[tex]time=\frac{distance}{speed}[/tex]
[tex]time=\frac{1}{4v}[/tex]
The rest of the distance with speed 2v takes:
[tex]time=\frac{3}{4*2v}[/tex]
[tex]time=\frac{3}{8v}[/tex]
Average speed is given by:
[tex]average=\frac{distance_{traveled}}{time_{travel}}[/tex]
Total time to cover the distance:
[tex]time=\frac{1}{4v}+\frac{3}{8v}[/tex]
[tex]time=\frac{2+3}{8v}[/tex]
[tex]time=\frac{5}{8v}[/tex]
Total distance traveled:
[tex]d=\frac{1}{4} +\frac{3}{4}[/tex]
d = 1
average = 1 ÷ [tex]\frac{5}{8v}[/tex]
[tex]average=\frac{8v}{5}[/tex]
The average speed of particle is 8/5v.