Respuesta :
Answer:
A. 11000000
Explanation:
A. 11000000 is 192
B. 01111111 is 127
C. 00000001 is 1
D. 10111111 is 191
Therefore, making A the largest.
The base 2 value which is largest from the options given is 11000000
Converting the values to base 10 :
1. 11000000
- [tex](1 \times {2}^{7}) + (1 \times {2}^{6}) + (0 \times {2}^{5}) + (0 \times {2}^{4}) + (0 \times {2}^{3}) + (0 \times {2}^{2}) + (0 \times {2}^{1}) + (0 \times {2}^{0} ) = 128 + 64 = 192[/tex]
2. 01111111
- [tex](0 \times {2}^{7}) + (1 \times {2}^{6}) + (1 \times {2}^{5}) + (1 \times {2}^{4}) + (1 \times {2}^{3}) + (1 \times {2}^{2}) + (1 \times {2}^{1}) + (1 \times {2}^{0} ) = 0 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127[/tex]
3. 00000001
- [tex](0 \times {2}^{7}) + (0 \times {2}^{6}) + (0 \times {2}^{5}) + (0 \times {2}^{4}) + (0 \times {2}^{3}) + (0 \times {2}^{2}) + (0 \times {2}^{1}) + (1 \times {2}^{0} ) = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1[/tex]
4. 10111111
- [tex](1 \times {2}^{7}) + (0 \times {2}^{6}) + (1 \times {2}^{5}) + (1 \times {2}^{4}) + (1 \times {2}^{3}) + (1 \times {2}^{2}) + (1 \times {2}^{1}) + (1 \times {2}^{0} ) = 128 + 0 + 32 + 16 + 8 + 4 + 2 + 1 = 191[/tex]
- The largest base 2 value obtained by comparing the equivalent base 10 values is 11000000
Learn more:https://brainly.com/question/23939074