Given:
The measure of ∠2 is twelve less than five times the measure of ∠1.
∠1 and ∠2 form a linear pair.
To find:
The measure of ∠2.
Solution:
Let measure of ∠1 be x.
The measure of ∠2 is twelve less than five times the measure of ∠1.
[tex]m\angle 2=(5(m\angle 1)-12)^\circ[/tex]
[tex]m\angle 2=(5x-12)^\circ[/tex]
∠1 and ∠2 form a linear pair. So,
[tex]m\angle 1+m\angle 2=180^\circ[/tex]
[tex]x^\circ+(5x-12)^\circ=180^\circ[/tex]
[tex]6x-12=180[/tex]
[tex]6x=180+12[/tex]
[tex]6x=192[/tex]
Divide both sides by 6.
[tex]x=32[/tex]
Now,
[tex]m\angle 2=(5(32)-12)^\circ[/tex]
[tex]m\angle 2=(160-12)^\circ[/tex]
[tex]m\angle 2=148^\circ[/tex]
Therefore, the measure of angle 2 is 148 degrees.