If m∠4 = 35, find m∠2. Explain.


35; ∠2 and ∠4 are alternate interior angles, so m∠2 = m∠4.

145; ∠2 and ∠4 are supplementary angles, so m∠2 = 180 − m∠4.

55; ∠2 and ∠4 are complementary angles, so m∠2 = 90 − m∠4

35; ∠2 and ∠4 are corresponding angles, so m∠2 = m∠4.

If m4 35 find m2 Explain 35 2 and 4 are alternate interior angles so m2 m4 145 2 and 4 are supplementary angles so m2 180 m4 55 2 and 4 are complementary angles class=

Respuesta :

Answer:

Option (1)

Step-by-step explanation:

From the picture attached,

Triangle CAB is a right triangle.

Therefore, m∠1 = 90°

Similarly, m∠ACD = 90°

m∠ACD = m∠ACB + m∠BCD = 90°

             = m∠3 + m∠4 = 90°

Since m∠4 = 35°,

m∠3 + 35° = 90°

m∠3 = 90° - 35°

        = 55°

In the triangle ABC,

m∠ACB + m∠CBA + m∠BAC = 180° [Property of a triangle]

m∠3 + m∠2 + m∠1 = 180°

55° + m∠2 + 90° = 180°

m∠2 + 145° = 180°

m∠2 = 180° - 145°

        = 35°

Since, AB║CD and BC is a transverse,

Therefore, m∠2 = m∠4 = 35° [Alternate interior angles]

Option (1) is the correct option.

A. 35; ∠2 and ∠4 are alternate interior angles, so m∠2 = m∠4.

Given:

[tex]m \angle 4 = 35[/tex]

Required:

[tex]m \angle 2[/tex]

From the image given, angle 2 and angle 4 lie on opposite side of the line that intercepts the two parallel lines, AB and CD. Angle 2 and angle 4 both lie within the parallel lines. Therefore, [tex]\angle 2 $ and $ \angle 4[/tex] are alternate interior angles.

Thus:

[tex]m \angle 2 = m \angle 4[/tex] (alternate interior angles theorem)

Since, [tex]m \angle 4 = 35^{\circ}[/tex]

therefore:

[tex]m \angle 2 = 35^{\circ}[/tex]

The right option is:

A. 35; ∠2 and ∠4 are alternate interior angles, so m∠2 = m∠4.

Learn more here:

https://brainly.com/question/13163808

RELAXING NOICE
Relax