Respuesta :
The ODE,
[tex]x^2\dfrac{\mathrm dy}{\mathrm dx}=y-xy[/tex]
is separable, since we can write
[tex]\dfrac{\mathrm dy}y=\dfrac{1-x}{x^2}\,\mathrm dx[/tex]
Integrate both sides to get
[tex]\ln|y|=-\dfrac1x-\ln|x|+C[/tex]
Solve for y :
[tex]y=e^{-\frac1x-\ln|x|+C}[/tex]
[tex]y=C\dfrac{e^{-\frac1x}}x[/tex]
Use the initial condition to solve for C :
[tex]-2=C\dfrac{e^{-\frac1{-1}}}{-1}=-Ce\implies C=\dfrac2e[/tex]
So the particular solution to the IVP is
[tex]y(x)=\dfrac{2e^{-\frac1x}}{ex}=\dfrac{2e^{-\frac1x-1}}x[/tex]
The explicit solution is: [tex]\ln\left|y\right|=-\frac{1}{x}-\ln\left|x\right|+\ln\left(2\right)-1[/tex]
The given differential equation is: [tex]x^{2}\cdot\frac{dy}{dx}=y-xy[/tex]
We will use separation of variable to solve it.
[tex]x^{2}\cdot\frac{dy}{dx}=y-xy\\ x^{2}\cdot\frac{dy}{dx}=y\left(1-x\right)\\ \frac{1}{y}dy=\frac{\left(1-x\right)}{x^{2}}dx\\ \int_{ }^{ }\frac{1}{y}dy=\int_{ }^{ }\frac{\left(1-x\right)}{x^{2}}dx\\ \int_{ }^{ }\frac{1}{y}dy=\int_{ }^{ }\left(\frac{1}{x^{2}}-\frac{1}{x}\right)dx\\ \ln\left|y\right|=-\frac{1}{x}-\ln\left|x\right|+C[/tex]
Given that y(- 1) = - 2.
[tex]\ln\left|-2\right|=-\frac{1}{-1}-\ln\left|-1\right|+C\\ \ln\left(2\right)=1-0+C\\ \ln\left(2\right)-1=C[/tex]
So the explicit solution is: [tex]\ln\left|y\right|=-\frac{1}{x}-\ln\left|x\right|+\ln\left(2\right)-1[/tex]
Learn more: https://brainly.com/question/20521181