Respuesta :

Step-by-step explanation:

(2x-x^2+5)+(-4x-3+7x^2)-5

= {(-x^2+2x+5)+(7x^2-4x-3) }- 5

= {6x^2-2x+2}-5

= 6x^2-2x+2-5

= 6x^2-2x-3

Answer:

[tex] \huge{ \boxed{ \sf{ - 6 {x}^{2} + 6x + 3}}}[/tex]

Step-by-step explanation:

[tex] \underline{ \sf{ \:First ,\: Adding : 2x - {x}^{2} + 5 \: and \: - 4x - 3 + 7 {x}^{2} }}[/tex]

[tex] \sf{2x - {x}^{2} + 5 + ( - 4x - 3 + 7 {x}^{2} })[/tex]

[tex] \text{Step \: 1} : [/tex] In addition , sign of each term in the expression remains unchanged. Just remove the unnecessary parentheses.

[tex] \mapsto{ \sf{ - 2x - {x}^{2} + 5 - 4x - 3 + 7 {x}^{2} }}[/tex]

[tex] \text{Step \: 2} : [/tex] Collect like terms and simplify

Like terms are those which have the same base.

[tex] \mapsto{ \sf{ - {x}^{2} + 7 {x}^{2} - 2x - 4x + 5 - 3}}[/tex]

[tex] \underline{ \sf{Remember!}} : [/tex]

  • The negative and positive integers are always subtracted but posses the sign of the bigger integer.
  • The negative integers are always added but posses the negative ( - ) sign.
  • The positive integers are always added and posses the positive ( + ) sign.

[tex] \mapsto{ \sf{6 {x}^{2} - 6x + 2}}[/tex]

[tex] \underline{ \sf{Now ,\: Subtracting \: 6 {x}^{2} - 6x + 2 \: from \: 5}}[/tex]

[tex] \sf{5 - (6 {x}^{2} - 6x + 2)}[/tex]

[tex] \text{Step \: 1} : [/tex] While subtracting, sign of each term of the second expression changes.

[tex] \mapsto{ \sf{5 - 6 {x}^{2} + 6x - 2}}[/tex]

[tex] \mapsto{ \sf{ 5 - 2 - 6 {x}^{2} + 6x}}[/tex]

[tex] \text{step \: 2} : \sf{Subtract \: 2 \: from \: 5}[/tex]

[tex] \mapsto{ \sf{ 3 - 6 {x}^{2} + 6x}}[/tex]

Now, Rewrite the expression in standard form. That means , You have to arrange the terms having greatest power to lowest.

[tex] \mapsto{ \sf{ - 6 {x}^{2} + 6x + 3}}[/tex]

Hope I helped!

Best regards! :D

~[tex] \sf{TheAnimeGirl}[/tex]

ACCESS MORE