Respuesta :

Answer:

[tex]x= 6[/tex]

[tex]y = -2[/tex]

Step-by-step explanation:

Given

[tex]SW = 2x + y[/tex]

[tex]WC = x - 2y[/tex]

[tex]SC = 20[/tex]

Required

Determine x and y

Since W is the midpoint;

[tex]SW = WC = \frac{1}{2} * SC[/tex]

[tex]SW = WC = \frac{1}{2} * 20[/tex]

[tex]SW = WC = 10[/tex]

Substitute 10 for SW and WC

[tex]2x + y = 10[/tex] --- (1)

[tex]x - 2y = 10[/tex] ---- (2)

Make x the subject in (2)

[tex]x = 10 + 2y[/tex]

Substitute [tex]x = 10 + 2y[/tex] in (1)

[tex]2(10 + 2y) + y = 10[/tex]

[tex]20 + 4y + y = 10[/tex]

[tex]20 + 5y = 10[/tex]

Solve for 5y

[tex]5y = 10 - 20[/tex]

[tex]5y = -10[/tex]

Solve for y

[tex]y = -10/5[/tex]

[tex]y = -2[/tex]

Recall that [tex]x = 10 + 2y[/tex]

[tex]x = 10 + 2(-2)[/tex]

[tex]x = 10 -4[/tex]

[tex]x= 6[/tex]