Answer:
[tex]x= 6[/tex]
[tex]y = -2[/tex]
Step-by-step explanation:
Given
[tex]SW = 2x + y[/tex]
[tex]WC = x - 2y[/tex]
[tex]SC = 20[/tex]
Required
Determine x and y
Since W is the midpoint;
[tex]SW = WC = \frac{1}{2} * SC[/tex]
[tex]SW = WC = \frac{1}{2} * 20[/tex]
[tex]SW = WC = 10[/tex]
Substitute 10 for SW and WC
[tex]2x + y = 10[/tex] --- (1)
[tex]x - 2y = 10[/tex] ---- (2)
Make x the subject in (2)
[tex]x = 10 + 2y[/tex]
Substitute [tex]x = 10 + 2y[/tex] in (1)
[tex]2(10 + 2y) + y = 10[/tex]
[tex]20 + 4y + y = 10[/tex]
[tex]20 + 5y = 10[/tex]
Solve for 5y
[tex]5y = 10 - 20[/tex]
[tex]5y = -10[/tex]
Solve for y
[tex]y = -10/5[/tex]
[tex]y = -2[/tex]
Recall that [tex]x = 10 + 2y[/tex]
[tex]x = 10 + 2(-2)[/tex]
[tex]x = 10 -4[/tex]
[tex]x= 6[/tex]